期刊文献+
共找到78篇文章
< 1 2 4 >
每页显示 20 50 100
Naive Bayesian Classifier在遥感影像分类中的应用研究 被引量:4
1
作者 陶建斌 舒宁 沈照庆 《遥感信息》 CSCD 2009年第2期52-56,共5页
将Naive Bayesian Classifier(简单贝叶斯网络分类器)用于遥感影像的分类,并对其主要问题如特征选择和后验概率推理等展开研究。使用K2结构学习算法选出具有类别可分性的波段,进一步利用互信息测试对遥感波段之间的相关性做分析,去除冗... 将Naive Bayesian Classifier(简单贝叶斯网络分类器)用于遥感影像的分类,并对其主要问题如特征选择和后验概率推理等展开研究。使用K2结构学习算法选出具有类别可分性的波段,进一步利用互信息测试对遥感波段之间的相关性做分析,去除冗余信息。特征(波段)的条件独立性假设简化了联合概率的计算,以较小的计算代价获得后验概率。在此基础上,将Naive Bayesian Classifier用于多光谱和高光谱影像的分类,获得很好的性能和相当高的稳健性。 展开更多
关键词 贝叶斯网络 简单贝叶斯网络分类器 互信息 条件独立性假设 遥感影像 分类
在线阅读 下载PDF
Adaptive target and jamming recognition for the pulse doppler radar fuze based on a time-frequency joint feature and an online-updated naive bayesian classifier with minimal risk 被引量:9
2
作者 Jian Dai Xin-hong Hao +2 位作者 Ze Li Ping Li Xiao-peng Yan 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第3期457-466,共10页
This paper considers the problem of target and jamming recognition for the pulse Doppler radar fuze(PDRF).To solve the problem,the matched filter outputs of the PDRF under the action of target and jamming are analyzed... This paper considers the problem of target and jamming recognition for the pulse Doppler radar fuze(PDRF).To solve the problem,the matched filter outputs of the PDRF under the action of target and jamming are analyzed.Then,the frequency entropy and peak-to-peak ratio are extracted from the matched filter output of the PDRF,and the time-frequency joint feature is constructed.Based on the time-frequency joint feature,the naive Bayesian classifier(NBC)with minimal risk is established for target and jamming recognition.To improve the adaptability of the proposed method in complex environments,an online update process that adaptively modifies the classifier in the duration of the work of the PDRF is proposed.The experiments show that the PDRF can maintain high recognition accuracy when the signal-to-noise ratio(SNR)decreases and the jamming-to-signal ratio(JSR)increases.Moreover,the applicable analysis shows that he ONBCMR method has low computational complexity and can fully meet the real-time requirements of PDRF. 展开更多
关键词 Pulse Doppler radar fuze(PDRF) Target and jamming recognition Time-frequency joint feature Online-update naive bayesian classifier minimal risk(ONBCMR)
在线阅读 下载PDF
基于Boosting机制的Naive Bayesian文本分类器 被引量:3
3
作者 崔林 付克明 +1 位作者 石生树 宋瀚涛 《计算机工程与应用》 CSCD 北大核心 2005年第8期31-33,67,共4页
Naive Bayesian分类器是一种有效的文本分类方法,但由于具有较强的稳定性,很难通过Boosting机制提高其性能。因此用Naive Bayesian分类器作为Boosting的基分类器需要解决的最大问题,就是如何破坏Naive Bayesian分类器的稳定性。提出了3... Naive Bayesian分类器是一种有效的文本分类方法,但由于具有较强的稳定性,很难通过Boosting机制提高其性能。因此用Naive Bayesian分类器作为Boosting的基分类器需要解决的最大问题,就是如何破坏Naive Bayesian分类器的稳定性。提出了3种破坏Naive Bayesian学习器稳定性的方法。第一种方法改变训练集样本,第二种方法采用随机属性选择社团,第三种方法是在Boosting的每次迭代中利用不同的文本特征提取方法建立不同的特征词集。实验表明,这几种方法各有其优缺点,但都比原有方法准确、高效。 展开更多
关键词 BOOSTING naive bayesian classifier 文本分类 文本挖掘 数据挖掘
在线阅读 下载PDF
基于特征多视图提升Naive Bayesian的Boosting改进算法 被引量:1
4
作者 林正奎 唐焕玲 +1 位作者 鲁明羽 王敬东 《北京交通大学学报》 CAS CSCD 北大核心 2009年第6期70-75,共6页
AdaBoost作为一种有效的集成学习方法,能够明显提高不稳定学习算法的分类正确率,但对稳定的Naive Bayesian分类算法的提升效果却不明显.为此,利用多种特征评估函数建立不同的特征视图,生成多个有差异的加权朴素贝叶斯(WNB)基分类器;尝... AdaBoost作为一种有效的集成学习方法,能够明显提高不稳定学习算法的分类正确率,但对稳定的Naive Bayesian分类算法的提升效果却不明显.为此,利用多种特征评估函数建立不同的特征视图,生成多个有差异的加权朴素贝叶斯(WNB)基分类器;尝试使用几种不同的方式将样本权重嵌入WNB基分类器的参数中,对WNB产生扰动,进一步增加基分类器的不稳定性.实验结果表明,对比AdaBoost所提算法,Boost MV-WNB能够明显提升WNB文本分类器的性能. 展开更多
关键词 ADABOOST 加权朴素贝叶斯 文本分类 特征多视图 样本权重
在线阅读 下载PDF
基于MEPA-RST-NBNC的复杂设备智能故障诊断方法研究 被引量:1
5
作者 张超 马存宝 +1 位作者 宋东 许家栋 《仪器仪表学报》 EI CAS CSCD 北大核心 2008年第12期2480-2485,共6页
结合最小熵原理法(MEPA)的数据离散功能,粗糙集理论(RST)的数据分析和容错能力,以及朴素贝叶斯网络分类器(NBNC)的并行推理能力,采用串行集成思想,提出了一种基于MEPA-RST-NBNC的复杂设备智能故障诊断方法。首先利用MEPA实现连续条件属... 结合最小熵原理法(MEPA)的数据离散功能,粗糙集理论(RST)的数据分析和容错能力,以及朴素贝叶斯网络分类器(NBNC)的并行推理能力,采用串行集成思想,提出了一种基于MEPA-RST-NBNC的复杂设备智能故障诊断方法。首先利用MEPA实现连续条件属性的离散化,形成离散化诊断决策表;然后利用RST分辨矩阵实现故障特征的简化,并采用最大聚类比原则提取出最佳约简;最后根据约简诊断决策表建立NBNC模型来实现高效快速的诊断推理。故障诊断实例表明该方法不仅克服了RST诊断法的规则搜索和临界误判问题,而且避免了NBNC诊断法的维数灾难问题,具有较强的工程实用性。 展开更多
关键词 最小熵原理方法 粗糙集 朴素贝叶斯网络分类器 故障诊断
在线阅读 下载PDF
基于朴素贝叶斯分类器的棉花盲椿象危害等级识别 被引量:24
6
作者 翟治芬 徐哲 +2 位作者 周新群 王丽丽 张建华 《农业工程学报》 EI CAS CSCD 北大核心 2015年第1期204-211,共8页
针对自然条件下棉花盲椿象危害区域提取和危害等级识别难的问题,提出了棉花盲椿象危害等级自动识别方法。该方法以自然条件下采集的不同盲椿象危害等级棉叶图像为对象,利用最大类间方差阈值分割和多颜色分量组合方法进行作物与土壤分离... 针对自然条件下棉花盲椿象危害区域提取和危害等级识别难的问题,提出了棉花盲椿象危害等级自动识别方法。该方法以自然条件下采集的不同盲椿象危害等级棉叶图像为对象,利用最大类间方差阈值分割和多颜色分量组合方法进行作物与土壤分离和病斑分割,并利用分水岭分割方法对粘连棉叶进行分离并提取盲椿象危害棉叶区域,提取图像的颜色、纹理和形状特征,结合朴素贝叶斯分类器,依据划分的棉花盲椿象危害等级标准,对盲椿象危害等级进行识别。不同盲椿象危害等级识别试验结果表明:该模型平均识别正确率达90.0%,通过比较试验表明,该模型在识别精度比BP神经网络高2.5%,运行速度比支持向量机高11.7%,可较好的对棉花盲椿象危害等级进行识别,可为棉花盲椿象的防治提供技术支持。 展开更多
关键词 棉花 分类 模型 盲椿象 危害等级识别 朴素贝叶斯分类器
在线阅读 下载PDF
基于特征选择的推荐系统托攻击检测算法 被引量:23
7
作者 伍之昂 庄毅 +1 位作者 王有权 曹杰 《电子学报》 EI CAS CSCD 北大核心 2012年第8期1687-1693,共7页
基于协同过滤的电子商务推荐系统极易受到托攻击,托攻击者注入伪造的用户模型增加或减少目标对象的推荐频率,如何检测托攻击是目前推荐系统领域的热点研究课题.分析五种类型托攻击对不同协同过滤算法产生的危害性,提出一种特征选择算法... 基于协同过滤的电子商务推荐系统极易受到托攻击,托攻击者注入伪造的用户模型增加或减少目标对象的推荐频率,如何检测托攻击是目前推荐系统领域的热点研究课题.分析五种类型托攻击对不同协同过滤算法产生的危害性,提出一种特征选择算法,为不同类型托攻击选取有效的检测指标.基于选择出的指标,提出两种基于监督学习的托攻击检测算法,第一种算法基于朴素贝叶斯分类;第二种算法基于k近邻分类.最后,通过实验验证了特征选择算法的有效性,及两种算法的灵敏性和特效性. 展开更多
关键词 推荐系统 托攻击检测 特征选择 朴素贝叶斯分类 K近邻分类
在线阅读 下载PDF
贝叶斯方法在玉米叶部病害图像识别中的应用 被引量:28
8
作者 赵玉霞 王克如 +3 位作者 白中英 李少昆 谢瑞芝 高世菊 《计算机工程与应用》 CSCD 北大核心 2007年第5期193-195,共3页
根据锈病、弯孢菌叶斑病、灰斑病、小斑病及褐斑病等五种玉米病斑图像的实际情况,在图像分割和特征提取的基础上,利用朴素贝叶斯分类器的统计学习方法,实现玉米叶部病斑的分类识别。研究结果表明,对五种玉米叶部病害的诊断精度在83%以... 根据锈病、弯孢菌叶斑病、灰斑病、小斑病及褐斑病等五种玉米病斑图像的实际情况,在图像分割和特征提取的基础上,利用朴素贝叶斯分类器的统计学习方法,实现玉米叶部病斑的分类识别。研究结果表明,对五种玉米叶部病害的诊断精度在83%以上。贝叶斯分类器具有网络结构简单、易于扩展等特点,对玉米叶部病害的分类识别效果较好,也为其它作物病害图像识别的研究提供了借鉴。 展开更多
关键词 朴素贝叶斯方法 玉米叶部病害 特征提取 分类识别 特征约简
在线阅读 下载PDF
缺失数据处理方法的比较研究 被引量:25
9
作者 刘鹏 雷蕾 张雪凤 《计算机科学》 CSCD 北大核心 2004年第10期155-156,174,共3页
数据挖掘已被广泛用于医疗领域,而大多数医疗数据集都存在缺失值。本文介绍了一些缺失值估计算法。建立了5种模型来提高预测的有效性,它们是保留缺失模型、直接丢弃模型、贝叶斯朴缺模型、贝叶斯重叠补缺模型和基于信息增益的贝叶斯重... 数据挖掘已被广泛用于医疗领域,而大多数医疗数据集都存在缺失值。本文介绍了一些缺失值估计算法。建立了5种模型来提高预测的有效性,它们是保留缺失模型、直接丢弃模型、贝叶斯朴缺模型、贝叶斯重叠补缺模型和基于信息增益的贝叶斯重叠补缺模型。这些模型在Clinics数据集上进行了处理和分析。用C4.5决策树和10叠交叉确认法来检验这些模型的性能,结果表明根据信息增益递减顺序排序,用朴素贝叶斯分类器来预测缺失值是有效的。 展开更多
关键词 信息增益 朴素贝叶斯分类器 模型 数据挖掘 决策树 数据集 医疗领域 医疗数据 保留 处理
在线阅读 下载PDF
垃圾邮件过滤的贝叶斯方法综述 被引量:24
10
作者 张铭锋 李云春 李巍 《计算机应用研究》 CSCD 北大核心 2005年第8期14-19,共6页
目前,基于内容的垃圾邮件过滤问题是Internet安全技术研究的一个重点问题,将机器学习的相关方法应用于垃圾邮件的搜索和判定是进行大量垃圾邮件处理的有效方法。由于贝叶斯分类方法在垃圾邮件处理上表现出了很高的准确度,因此基于贝叶... 目前,基于内容的垃圾邮件过滤问题是Internet安全技术研究的一个重点问题,将机器学习的相关方法应用于垃圾邮件的搜索和判定是进行大量垃圾邮件处理的有效方法。由于贝叶斯分类方法在垃圾邮件处理上表现出了很高的准确度,因此基于贝叶斯分类的垃圾邮件分类方法受到了广泛的关注。主要介绍了贝叶斯方法的理论依据和实现方法,总结了近几年的贝叶斯分类方法的研究情况和贝叶斯方法在垃圾邮件处理中应用的优点和局限性,并提出了下一步可能的研究方向。 展开更多
关键词 垃圾邮件 贝叶斯分类 向量空间模型 朴素贝叶斯分类
在线阅读 下载PDF
风电机组输出功率超短期预测的组合模型研究 被引量:14
11
作者 周洪煜 赵乾 +2 位作者 王照阳 曾济贫 梁栋义 《太阳能学报》 EI CAS CSCD 北大核心 2014年第3期457-461,共5页
为了提高风电功率的预测精度,基于多模型的预测MS-RBF神经网络的进行组合,通过Bayesian分类训练各子模型的权值,然后根据权重计算最终预测值;基于新疆某风电场实测历史数据,采用该组合模型与RBFNN模型分析对比,验证结果表明该组合模型... 为了提高风电功率的预测精度,基于多模型的预测MS-RBF神经网络的进行组合,通过Bayesian分类训练各子模型的权值,然后根据权重计算最终预测值;基于新疆某风电场实测历史数据,采用该组合模型与RBFNN模型分析对比,验证结果表明该组合模型有效减少了较大误差出现的频率,提高了整体的预测精度。 展开更多
关键词 风电功率 预测模型 RBF神经网络 朴素bayesian分类器
在线阅读 下载PDF
基于粗糙集属性约简和贝叶斯分类器的故障诊断 被引量:16
12
作者 姚成玉 李男 +1 位作者 冯中魁 陈东宁 《中国机械工程》 EI CAS CSCD 北大核心 2015年第14期1969-1977,共9页
利用改进的小波包对收集的信号进行特征提取,解决了小波包分解的频率混叠问题;针对故障信息中的冗余属性问题,提出了基于类差别矩阵改进属性重要度的属性约简算法,根据各条件属性在类差别矩阵中出现1的频次定义新的属性重要度,提高属性... 利用改进的小波包对收集的信号进行特征提取,解决了小波包分解的频率混叠问题;针对故障信息中的冗余属性问题,提出了基于类差别矩阵改进属性重要度的属性约简算法,根据各条件属性在类差别矩阵中出现1的频次定义新的属性重要度,提高属性约简的效率;通过考虑条件属性与类属性间的关联性,提出了基于熵权法的属性加权朴素贝叶斯分类器算法,提高故障分类精度。通过对滚动轴承故障数据的对比分析,验证了所提组合方法在提高故障诊断正确率、快速性方面所具有的优势。 展开更多
关键词 故障诊断 改进小波包 粗糙集 属性约简 属性加权朴素贝叶斯分类器
在线阅读 下载PDF
基于特征加权朴素贝叶斯分类算法的网络用户识别 被引量:8
13
作者 刘磊 陈兴蜀 +2 位作者 尹学渊 段意 吕昭 《计算机应用》 CSCD 北大核心 2011年第12期3268-3270,共3页
基于网络用户的访问记录,提出了采用特征加权的朴素贝叶斯分类算法对用户进行识别。首先利用基于WinPcap框架的数据采集系统对用户访问记录进行采集,通过分析记录从5个方面对用户特征进行统计,并经过筛选后对特征进行选取,最后采用特征... 基于网络用户的访问记录,提出了采用特征加权的朴素贝叶斯分类算法对用户进行识别。首先利用基于WinPcap框架的数据采集系统对用户访问记录进行采集,通过分析记录从5个方面对用户特征进行统计,并经过筛选后对特征进行选取,最后采用特征加权的朴素贝叶斯分类算法对3 300个测试样本进行识别,识别率达到了85.73%。实验结果表明该算法能够有效实现对网络用户身份的识别。 展开更多
关键词 用户识别 朴素贝叶斯分类器 特征加权 特征选择 数据采集
在线阅读 下载PDF
基于Stacking元学习策略的电力系统暂态稳定评估 被引量:22
14
作者 叶圣永 王晓茹 +1 位作者 刘志刚 钱清泉 《电力系统保护与控制》 EI CSCD 北大核心 2011年第6期12-16,23,共6页
为提高电力系统暂态稳定评估单个模型的准确率,研究了基于元学习策略的暂态稳定评估问题,提出了支持向量机、决策树、朴素贝叶斯和K最近邻法作为基学习算法,线性回归为元学习算法的Stacking评估模型。该模型将上述基学习算法的概率输出... 为提高电力系统暂态稳定评估单个模型的准确率,研究了基于元学习策略的暂态稳定评估问题,提出了支持向量机、决策树、朴素贝叶斯和K最近邻法作为基学习算法,线性回归为元学习算法的Stacking评估模型。该模型将上述基学习算法的概率输出作为新训练数据的输入特征,同时保留原始的类标识。线性回归算法在新训练集上学习得到最终暂态稳定评估结果。新英格兰39节点测试系统和IEEE50机测试系统上仿真实现了该模型,仿真结果证明所提模型比单个模型的评估性能更好,为电力系统暂态稳定评估提供了新的思路。 展开更多
关键词 暂态稳定评估 朴素贝叶斯 支持向量机 决策树 K最近邻法 Stacking算法
在线阅读 下载PDF
一种环境因素敏感的WebServiceQoS监控方法 被引量:8
15
作者 庄媛 张鹏程 +2 位作者 李雯睿 冯钧 朱跃龙 《软件学报》 EI CSCD 北大核心 2016年第8期1978-1992,共15页
面向服务系统的执行能力依赖第三方提供的服务,在复杂多变的网络环境中,这种依赖会带来服务质量(QoS)的不确定性.而QoS是衡量第三方服务质量的重要标准,因此,有效监控QoS是对Web服务实现质量控制的必要过程.现有监控方法都未考虑环境因... 面向服务系统的执行能力依赖第三方提供的服务,在复杂多变的网络环境中,这种依赖会带来服务质量(QoS)的不确定性.而QoS是衡量第三方服务质量的重要标准,因此,有效监控QoS是对Web服务实现质量控制的必要过程.现有监控方法都未考虑环境因素的影响,比如服务器位置、用户使用服务的位置和使用时间段负载等,而这些影响在实际监控中是存在的,忽略环境因素会导致监控结果与实际结果有悖.针对这一问题,提出了一种基于加权朴素贝叶斯算法w BSRM(weightednaive Bayes running monitoring)的Web Service QoS监控方法.受机器学习分类方法的启发,通过TF-IDF(term frequency-inverse document frequency)算法计算环境因素的影响,通过对部分样本进行学习,构建加权朴素贝叶斯分类器.将监控结果分类,满足QoS标准为c_0,不满足QoS标准为c_1,监控时调用分类器得到c_0和c_1的后验概率之比,对比值进行分析,可得监控结果满足QoS属性标准、不满足QoS属性标准和不能判断这3种情况.在网络开源数据以及随机数据集上的实验结果表明:利用TF-IDF算法能够准确地估算环境因子权值,通过加权朴素贝叶斯分类器,能够更好地监控QoS,效率显著优于现有方法. 展开更多
关键词 服务质量 影响因子 TF-IDF算法 加权朴素贝叶斯分类器 监控
在线阅读 下载PDF
属性加权的朴素贝叶斯集成分类器 被引量:10
16
作者 张雯 张化祥 《计算机工程与应用》 CSCD 北大核心 2010年第29期144-146,共3页
为提高朴素贝叶斯分类器的分类精度和泛化能力,提出了基于属性相关性的加权贝叶斯集成方法(WEBNC)。根据每个条件属性与决策属性的相关度对其赋以相应的权值,然后用AdaBoost训练属性加权后的BNC。该分类方法在16个UCI标准数据集上进行... 为提高朴素贝叶斯分类器的分类精度和泛化能力,提出了基于属性相关性的加权贝叶斯集成方法(WEBNC)。根据每个条件属性与决策属性的相关度对其赋以相应的权值,然后用AdaBoost训练属性加权后的BNC。该分类方法在16个UCI标准数据集上进行了测试,并与BNC、贝叶斯网和由AdaBoost训练出的BNC进行比较,实验结果表明,该分类器具有更高的分类精度与泛化能力。 展开更多
关键词 朴素贝叶斯分类器 相关度 相关系数 属性加权 ADABOOST
在线阅读 下载PDF
基于朴素贝叶斯的风电功率组合概率区间预测 被引量:61
17
作者 杨锡运 张艳峰 +1 位作者 叶天泽 苏杰 《高电压技术》 EI CAS CSCD 北大核心 2020年第3期1099-1108,共10页
为了提高风电功率概率区间预测性能,提出了一种基于朴素贝叶斯的正态指数平滑法和混合滑动核密度估计的组合风电功率区间预测方法。首先,通过朴素贝叶斯分类器建立点预测模型;然后,分别通过正态指数平滑法和混合滑动核密度估计预测误差... 为了提高风电功率概率区间预测性能,提出了一种基于朴素贝叶斯的正态指数平滑法和混合滑动核密度估计的组合风电功率区间预测方法。首先,通过朴素贝叶斯分类器建立点预测模型;然后,分别通过正态指数平滑法和混合滑动核密度估计预测误差的概率分布,得出对应的某一置信概率下的预测区间;最后,利用熵权法合理的加权组合正态指数平滑法估计所得预测区间和混合滑动核密度估计所得预测区间,生成最终的风电功率预测区间。研究结果表明:与正态指数平滑法和混合滑动核密度得出的预测区间相比,提出的熵权法加权组合预测可提高区间覆盖率、降低区间平均带宽,证明了该组合概率区间预测方法能同时兼顾可靠性和准确性。论文研究可为风电功率预测提供参考。 展开更多
关键词 风电功率 区间预测 朴素贝叶斯 指数平滑法 核密度估计 熵权法
在线阅读 下载PDF
基于朴素贝叶斯分类器的硬件木马检测方法 被引量:7
18
作者 王建新 王柏人 +1 位作者 曲鸣 张磊 《计算机应用研究》 CSCD 北大核心 2017年第10期3073-3076,共4页
在侧信道分析的基础上,针对芯片中存在的硬件木马,提出一种基于朴素贝叶斯分类器的硬件木马检测。该方法能够利用训练样本集构建分类器,分类器形成后便可将采集到的待测芯片功耗信息准确分类,从而实现硬件木马检测。实验结果表明,对于... 在侧信道分析的基础上,针对芯片中存在的硬件木马,提出一种基于朴素贝叶斯分类器的硬件木马检测。该方法能够利用训练样本集构建分类器,分类器形成后便可将采集到的待测芯片功耗信息准确分类,从而实现硬件木马检测。实验结果表明,对于占电路资源1.49%和2.39%的两种木马,贝叶斯分类器的误判率仅为2.17%,验证了该方法的有效性和适用性。此外,在与欧氏距离判别法比较时,基于朴素贝叶斯分类器的方法表现出了更高的判别准确率,同时也具有从混杂芯片中识别出木马芯片与标准芯片的能力,这又是马氏距离判别法所不具备的。 展开更多
关键词 侧信道分析 硬件木马 朴素贝叶斯分类器 性能比对
在线阅读 下载PDF
基于粗糙集和贝叶斯网络的作战效能评估 被引量:5
19
作者 程恺 车先明 +2 位作者 张宏军 智军 张睿 《计算机工程》 CAS CSCD 北大核心 2011年第1期10-12,15,共4页
针对部队作战不确定因素多、建模复杂的特点,提出一种作战行动效能的评估模型。运用粗糙集理论除去冗余的评估指标,降低朴素贝叶斯分类器的时空复杂度。给出该模型的评估算法步骤,通过贝叶斯网络的参数学习,将不同数据类型的评估指标统... 针对部队作战不确定因素多、建模复杂的特点,提出一种作战行动效能的评估模型。运用粗糙集理论除去冗余的评估指标,降低朴素贝叶斯分类器的时空复杂度。给出该模型的评估算法步骤,通过贝叶斯网络的参数学习,将不同数据类型的评估指标统一在类条件概率分布中,既保证了评估的客观性,又较好地表达出作战过程随机性的特点。实例研究表明,将该方法用于作战行动效能的评估是可行的。 展开更多
关键词 粗糙集 朴素贝叶斯分类器 效能评估
在线阅读 下载PDF
化学成分-朴素贝叶斯分类算法的烟叶产地模式识别 被引量:8
20
作者 吴圣超 刘太昂 +1 位作者 葛炯 沙云菲 《河南师范大学学报(自然科学版)》 CAS 北大核心 2018年第1期77-83,共7页
把总糖、还原糖、总氮、烟碱、总氯和总钾这6个成分含量作为影响烤烟烟叶产地的自变量,利用朴素贝叶斯分类算法(NBC)建立烤烟烟叶生产地的判别模型.结果表明,用朴素贝叶斯分类建立的烟叶产地识别模型建模、留一法、预报准确度分别为91.... 把总糖、还原糖、总氮、烟碱、总氯和总钾这6个成分含量作为影响烤烟烟叶产地的自变量,利用朴素贝叶斯分类算法(NBC)建立烤烟烟叶生产地的判别模型.结果表明,用朴素贝叶斯分类建立的烟叶产地识别模型建模、留一法、预报准确度分别为91.24%、89.05%和88.24%,而用支持向量机分类和K点最近邻分类建立的烟叶产地识别模型的准确率均低于朴素贝叶斯分类建立的模型.可见利用朴素贝叶斯分类算法对烟叶产地进行模式识别研究,可以很好地反映烟叶样本由于产地的不同带来的差异.因此可以将NBC算法引入到烟草行业的研究中. 展开更多
关键词 烟草 朴素贝叶斯分类 模式识别
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部