期刊文献+
共找到388篇文章
< 1 2 20 >
每页显示 20 50 100
Uplink NOMA signal transmission with convolutional neural networks approach 被引量:3
1
作者 LIN Chuan CHANG Qing LI Xianxu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2020年第5期890-898,共9页
Non-orthogonal multiple access(NOMA), featuring high spectrum efficiency, massive connectivity and low latency, holds immense potential to be a novel multi-access technique in fifth-generation(5G) communication. Succe... Non-orthogonal multiple access(NOMA), featuring high spectrum efficiency, massive connectivity and low latency, holds immense potential to be a novel multi-access technique in fifth-generation(5G) communication. Successive interference cancellation(SIC) is proved to be an effective method to detect the NOMA signal by ordering the power of received signals and then decoding them. However, the error accumulation effect referred to as error propagation is an inevitable problem. In this paper,we propose a convolutional neural networks(CNNs) approach to restore the desired signal impaired by the multiple input multiple output(MIMO) channel. Especially in the uplink NOMA scenario,the proposed method can decode multiple users' information in a cluster instantaneously without any traditional communication signal processing steps. Simulation experiments are conducted in the Rayleigh channel and the results demonstrate that the error performance of the proposed learning system outperforms that of the classic SIC detection. Consequently, deep learning has disruptive potential to replace the conventional signal detection method. 展开更多
关键词 non-orthogonal multiple access(NOMA) deep learning(DL) convolutional neural networks(CNNs) signal detection
在线阅读 下载PDF
基于Bi-LSTM和改进残差学习的风电功率超短期预测方法 被引量:2
2
作者 王进峰 吴盛威 +1 位作者 花广如 吴自高 《华北电力大学学报(自然科学版)》 北大核心 2025年第1期56-65,共10页
现有的方法在以风电功率时间序列拟合功率曲线时,难以表达风电功率数据所包含的趋势性和周期性等时间信息而出现性能退化问题,从而导致预测精度下降。为了解决性能退化问题从而提高风电功率时间序列预测的精度,提出了基于双向长短时记忆... 现有的方法在以风电功率时间序列拟合功率曲线时,难以表达风电功率数据所包含的趋势性和周期性等时间信息而出现性能退化问题,从而导致预测精度下降。为了解决性能退化问题从而提高风电功率时间序列预测的精度,提出了基于双向长短时记忆(Bi-LSTM)和改进残差学习的风电功率预测方法。方法由两个部分组成,第一部分是以Bi-LSTM为主的多残差块上,结合稠密残差块网络(DenseNet)与多级残差网络(MRN)的残差连接方式,并且在残差连接上使用一维卷积神经网络(1D CNN)来提取风电功率值中时序的非线性特征部分。第二部分是Bi-LSTM与全连接层(Dense)组成的解码器,将多残差块提取到的功率值时序非线性特征映射为预测结果。方法在实际运行的风电功率数据上进行实验,并与常见的残差网络方法和时间序列预测方法进行对比。方法相比于其他模型方法有着更高的预测精度以及更好的泛化能力。 展开更多
关键词 深度学习 残差网络 风电功率预测 双向长短时记忆 一维卷积神经网络
在线阅读 下载PDF
基于改进一维卷积神经网络模型的蛋清粉近红外光谱真实性检测 被引量:1
3
作者 祝志慧 李沃霖 +4 位作者 韩雨彤 金永涛 叶文杰 王巧华 马美湖 《食品科学》 北大核心 2025年第6期245-253,共9页
引入近红外光谱检测技术,构建改进一维卷积神经网络(one-dimensional convolutional neural network,1D-CNN)蛋清粉真实性检测模型。该模型基于1D-CNN模型,无需对光谱数据进行预处理;同时在网络中加入有效通道注意力模块和一维全局平均... 引入近红外光谱检测技术,构建改进一维卷积神经网络(one-dimensional convolutional neural network,1D-CNN)蛋清粉真实性检测模型。该模型基于1D-CNN模型,无需对光谱数据进行预处理;同时在网络中加入有效通道注意力模块和一维全局平均池化层,提高模型提取光谱特征的能力,减少噪声干扰。结果表明,改进后的EG-1D-CNN模型可判别蛋清粉样本的真伪,对于掺假蛋清粉的检测率可达到97.80%,总准确率(AAR)为98.93%,最低检测限(LLRC)在淀粉、大豆分离蛋白、三聚氰胺、尿素和甘氨酸5种单掺杂物质上分别可达到1%、5%、0.1%、1%、5%,在多掺杂中可达到0.1%~1%,平均检测时间(AATS)可达到0.004 4 s。与传统1D-CNN网络结构及其他改进算法相比,改进后的EG-1D-CNN模型在蛋清粉真实性检测上具有更高精度,检测速度快,且模型占用空间小,更适合部署在嵌入式设备中。该研究可为后续开发针对蛋粉质量检测的便携式近红外光谱检测仪提供一定的理论基础。 展开更多
关键词 蛋清粉 近红外光谱 真实性检测 一维卷积神经网络 深度学习
在线阅读 下载PDF
ISW32离心泵深度一维卷积神经网络故障诊断 被引量:1
4
作者 贺婷婷 张晓婷 +1 位作者 李强 颜洁 《机械设计与制造》 北大核心 2025年第4期213-216,共4页
传统卷积神经网络进行故障诊断过程费时费力,且人工提取特征未必完善。通过搭建离心泵故障诊断实验系统获得采样本,输入到深度一维卷积神经网络中进行故障诊断。通过提高1DCNN深度,为1DCNN模型设置了更多卷积层,最终实现D-1DCNN模型达... 传统卷积神经网络进行故障诊断过程费时费力,且人工提取特征未必完善。通过搭建离心泵故障诊断实验系统获得采样本,输入到深度一维卷积神经网络中进行故障诊断。通过提高1DCNN深度,为1DCNN模型设置了更多卷积层,最终实现D-1DCNN模型达到更强的特征提取能力。通过参数设置对深度一维卷积神经网络进行调节,确定最优的参数范围:学习率为0.01,卷积核选取为(1×3),批处理量为50,采取最大池化条件,以Adam优化器优化实验参数。实验测试研究结果表明:深度一维卷积神经网络在离心泵故障诊断实现了99.97%准确率,可以满足智能故障诊断的要求。该研究对提高ISW32离心泵的故障诊断能量具有很好的实际应用价值。 展开更多
关键词 离心泵 故障诊断 深度一维卷积神经网络 准确率 实验 采样
在线阅读 下载PDF
基于1DCNN特征提取和RF分类的滚动轴承故障诊断
5
作者 张豪 刘其洪 +1 位作者 李伟光 李漾 《中国测试》 北大核心 2025年第4期137-143,共7页
针对深度学习技术在滚动轴承故障诊断识别中依赖于大量测量数据,相对较少的数据可能会导致过度拟合并降低模型的稳定性等问题,提出一种一维卷积神经网络(1DCNN)和随机森林(RF)相结合的轴承故障诊断模型。将原始时域信号输入搭建的1DCNN... 针对深度学习技术在滚动轴承故障诊断识别中依赖于大量测量数据,相对较少的数据可能会导致过度拟合并降低模型的稳定性等问题,提出一种一维卷积神经网络(1DCNN)和随机森林(RF)相结合的轴承故障诊断模型。将原始时域信号输入搭建的1DCNN网络中,提取原始数据特征向量,对特征向量进行t-SNE降维可视化,验证1DCNN特征提取的有效性。将特征向量输入随机森林实现故障状态识别,解决小样本的滚动轴承故障分类问题。在CWRU数据集和Paderborn数据集上进行实验,针对不同类型、不同损伤程度的轴承,得到分类结果准确率分别达到99.69%和99.16%。与传统的神经网络和机器学习分类模型相比,1DCNN-RF模型具有更高的诊断准确率,可验证所提模型的泛化性和有效性。 展开更多
关键词 滚动轴承 故障诊断 一维卷积神经网络 随机森林
在线阅读 下载PDF
基于多重相似性和增强注意力预测药物-靶标相互作用
6
作者 王伟 余梦雪 +5 位作者 孙斌 万仕彤 刘栋 周运 张红军 王鲜芳 《河南师范大学学报(自然科学版)》 北大核心 2025年第2期99-107,共9页
在新药发现和药物重定位研究中,发现药物与靶标之间的相互作用是重要的研究内容.针对药物与靶标相互作用网络,提出一种基于多重相似性和增强注意力机制的图卷积神经网络模型(RSGCN)预测药物-靶标相互作用.首先,提出了多重相似性来捕捉... 在新药发现和药物重定位研究中,发现药物与靶标之间的相互作用是重要的研究内容.针对药物与靶标相互作用网络,提出一种基于多重相似性和增强注意力机制的图卷积神经网络模型(RSGCN)预测药物-靶标相互作用.首先,提出了多重相似性来捕捉网络结构特征,以充分利用节点间的直接或间接关系.然后,通过PCA降维减少相似性噪声对实验结果的影响.最后,采用图卷积神经网络(graph convolution neural network,GCN)获得节点嵌入表示,并融入基于注意力的增强层,通过增强注意力机制获得节点间的注意力权重,能够高效地预测药物与靶标之间的相互作用.在黄金标准数据集上的实验结果表明RSGCN模型具有较好的性能. 展开更多
关键词 图卷积神经网络(GCN) 多重相似性 PCA 增强注意力机制 药物-靶标相互作用
在线阅读 下载PDF
高光谱图像结合一维卷积神经网络的玉米大斑病早期识别
7
作者 路阳 顾福谦 +2 位作者 谷英楠 许思源 王鹏 《光谱学与光谱分析》 北大核心 2025年第8期2302-2310,共9页
大斑病在全球各大玉米产区都有出现,降低了玉米的品质和产量。该病害多在病斑明显时识别,难以及时防治。本文提出一维卷积神经网络(1DCNN)高光谱模型,实现早期识别。以玉米大斑病为研究对象,手动接种大斑病后,选取吐丝期的玉米叶片进行... 大斑病在全球各大玉米产区都有出现,降低了玉米的品质和产量。该病害多在病斑明显时识别,难以及时防治。本文提出一维卷积神经网络(1DCNN)高光谱模型,实现早期识别。以玉米大斑病为研究对象,手动接种大斑病后,选取吐丝期的玉米叶片进行试验,此时期刚显现病斑特征,但无法通过视觉属性观察看出是何种病害。首先采用SOC710E光谱仪采集高光谱图像,通过选取感兴趣区域获得玉米叶片的健康和大斑病两种光谱数据。使用SG卷积平滑、多元散射校正(MSC)、标准正态变换(SNV)和去趋势算法(DT)等四种光谱预处理方法,以去除光谱数据中的噪声。分别使用随机森林(RF)和K最近邻(KNN)两种监督学习算法,以准确率作为评价指标,对高光谱图像进行识别。结果表明,MSC为优选的预处理方法,两种模型预测准确率分别为88.13%和86.26%。然后采用竞争性自适应重加权算法对玉米叶片光谱数据进行特征波长提取,从原始的260个波长中优选出48个特征波长。最后建立一维卷积深度学习模型进行分类,识别准确率达到99.61%,相较于传统分类模型KNN、RF、偏最小二乘判别分析(PLS-DA)、反向传播神经网络(BP)、支持向量机(SVM),提出的模型识别准确率分别提高了5.94%、6.88%、6.48%、8.27%、12.12%。高光谱技术结合深度学习模型可以更有效识别玉米大斑病,为实现玉米病害早期识别提供了一种新的思路和方法。 展开更多
关键词 一维卷积神经网络 高光谱图像 玉米 大斑病
在线阅读 下载PDF
基于Attention-1DCNN-CE的加密流量分类方法
8
作者 耿海军 董赟 +3 位作者 胡治国 池浩田 杨静 尹霞 《计算机应用》 北大核心 2025年第3期872-882,共11页
针对传统加密流量识别方法存在多分类准确率低、泛化性不强以及易侵犯隐私等问题,提出一种结合注意力机制(Attention)与一维卷积神经网络(1DCNN)的多分类深度学习模型——Attention-1DCNN-CE。该模型包含3个核心部分:1)数据集预处理阶段... 针对传统加密流量识别方法存在多分类准确率低、泛化性不强以及易侵犯隐私等问题,提出一种结合注意力机制(Attention)与一维卷积神经网络(1DCNN)的多分类深度学习模型——Attention-1DCNN-CE。该模型包含3个核心部分:1)数据集预处理阶段,保留原始数据流中数据包间的空间关系,并根据样本分布构建成本敏感矩阵;2)在初步提取加密流量特征的基础上,利用Attention和1DCNN模型深入挖掘并压缩流量的全局与局部特征;3)针对数据不平衡这一挑战,通过结合成本敏感矩阵与交叉熵(CE)损失函数,显著提升少数类别样本的分类精度,进而优化模型的整体性能。实验结果表明,在BOT-IOT和TON-IOT数据集上该模型的整体识别准确率高达97%以上;并且该模型在公共数据集ISCX-VPN和USTC-TFC上表现优异,在不需要预训练的前提下,达到了与ET-BERT(Encrypted Traffic BERT)相近的性能;相较于PERT(Payload Encoding Representation from Transformer),该模型在ISCX-VPN数据集的应用类型检测中的F1分数提升了29.9个百分点。以上验证了该模型的有效性,为加密流量识别和恶意流量检测提供了解决方案。 展开更多
关键词 网络安全 加密流量 注意力机制 一维卷积神经网络 数据不平衡 成本敏感矩阵
在线阅读 下载PDF
基于多维注意力机制的高速公路交通流量预测方法
9
作者 虞安军 励英迪 +5 位作者 杨哲懿 付崇宇 童蔚苹 余佳 刘云海 刘志远 《汽车安全与节能学报》 北大核心 2025年第3期463-469,共7页
为了实现精准的交通流量预测,提高高速公路智慧管理水平,该文构建了一种基于多维注意力机制的交通流量预测模型,并在樟吉高速公路真实交通数据集上开展对比实验,以验证模型的准确性及预测精度。模型基于图神经网络(GNN)和时间卷积网络(T... 为了实现精准的交通流量预测,提高高速公路智慧管理水平,该文构建了一种基于多维注意力机制的交通流量预测模型,并在樟吉高速公路真实交通数据集上开展对比实验,以验证模型的准确性及预测精度。模型基于图神经网络(GNN)和时间卷积网络(TCN)提取交通流空间和时间维度的特征,结合多维注意力机制挖掘时空数据中的关键信息,同时引入多任务学习架构,通过基于同方差不确定性的损失函数来平衡不同任务共同学习,以提高模型的泛化能力和鲁棒性。结果表明:该模型在测试集上的均方根误差(RMSE)和平均绝对误差(MAE)分别为7.467和5.133,相较基准模型有更好的预测精度;提出的该交通流量预测方法可有效地挖掘交通流的时空特性,描述真实交通运行状态,对高速公路交通流量做出精准预测。 展开更多
关键词 交通流预测 图神经网络(GNN) 时间卷积网络(TCN) 多维注意力机制
在线阅读 下载PDF
高速动车组车体轻量化与模态匹配优化设计研究
10
作者 王浩 李凡松 +2 位作者 杜翔 王成强 邬平波 《中南大学学报(自然科学版)》 北大核心 2025年第4期1658-1672,共15页
针对高速动车组车体轻量化设计导致的一阶菱形模态频率降低问题,从车体设计出发,研究无横梁底架的车体提升一阶菱形模态频率的设计方法。基于灵敏度及模态振型分析对车体的结构进行优化、基于卷积神经网络代理模型以及协方差矩阵自适应... 针对高速动车组车体轻量化设计导致的一阶菱形模态频率降低问题,从车体设计出发,研究无横梁底架的车体提升一阶菱形模态频率的设计方法。基于灵敏度及模态振型分析对车体的结构进行优化、基于卷积神经网络代理模型以及协方差矩阵自适应演化优化算法对车体断面型材厚度进行优化。基于线路实测车轮和钢轨外形,建立考虑弹性车体的动车组刚柔耦合动力学模型。研究结果表明:优化后车体骨架质量减小680 kg,质量减小率为6.4%,整备状态下一阶菱形频率提升1.66 Hz,提升了19.1%。优化后的车体不仅轻量化程度更高,且能够有效抑制车体的异常弹性振动,提高乘客的乘坐舒适性。 展开更多
关键词 动车组 抖车 结构优化 菱形模态 卷积神经网络 优化算法
在线阅读 下载PDF
噪声背景下梅尔频率倒谱系数与多注意力网络在电机故障诊断中的应用
11
作者 宋恩哲 朱仁杰 +2 位作者 靖海国 姚崇 柯赟 《哈尔滨工程大学学报》 北大核心 2025年第3期475-485,共11页
针对电机实际工作过程中存在噪声干扰导致故障诊断精度下降的问题,本文提出了一种基于梅尔频率倒谱系数动态特征与多注意力融合卷积神经网络的故障诊断方法。通过梅尔频率倒谱系数动态特征提取噪声信号中的低频信息,并结合卷积注意力模... 针对电机实际工作过程中存在噪声干扰导致故障诊断精度下降的问题,本文提出了一种基于梅尔频率倒谱系数动态特征与多注意力融合卷积神经网络的故障诊断方法。通过梅尔频率倒谱系数动态特征提取噪声信号中的低频信息,并结合卷积注意力模块的自适应调节能力及多特征融合策略进一步减少噪声对故障诊断的干扰。通过电机台架数据验证了该方法在噪声条件下诊断的可行性,然而该方法受梅尔频率倒谱系数参数与网络结构的直接影响,因此具体分析了不同参数条件对抗噪性能的影响。实验结果表明:在信噪比-10 dB噪声背景下,梅尔频率倒谱系数动态特征与多注意力融合卷积神经网络相结合的故障诊断方法仍保持90%以上的诊断精度。 展开更多
关键词 电机 故障诊断 噪声环境 梅尔频率倒谱系数 卷积神经网络 多尺度 卷积注意力模块 特征融合
在线阅读 下载PDF
波长注意力1DCNN近红外光谱定量分析算法研究
12
作者 陈蓓 蒋思远 郑恩让 《光谱学与光谱分析》 北大核心 2025年第6期1598-1604,共7页
近红外光谱(NIRS)技术因其快速、无损和高效的特点,广泛应用于石油、纺织、食品、制药等领域。然而传统的分析方法在处理变量多、冗余大的光谱数据时,往往存在特征提取困难和建模精度不高等问题。因此提出一种适用于近红外光谱且无需变... 近红外光谱(NIRS)技术因其快速、无损和高效的特点,广泛应用于石油、纺织、食品、制药等领域。然而传统的分析方法在处理变量多、冗余大的光谱数据时,往往存在特征提取困难和建模精度不高等问题。因此提出一种适用于近红外光谱且无需变量筛选的一维波长注意力卷积神经网络(WA-1DCNN)定量建模方法,该建模方法结构简单、通用性强、准确率高。该研究引入波长注意力机制,通过赋予不同波长数据不同的权重,增强模型对重要波长特征的捕捉能力,从而提高定量分析的准确性和鲁棒性。为了验证所提出方法的可行性,采用了公开的4种近红外光谱数据集,将所提出的算法与加入波长筛选偏最小二乘法(PLS)、支持向量回归(SVR)、极限学习机(ELM)三种传统建模方法和一维卷积神经网络(1DCNN)建模方法进行了对比,并通过模型性能指标均方根误差(RMSE)和决定系数(R^(2))对模型性能评估。结果表明没有使用波长筛选算法的WA-1DCNN建模方法性能指标均优于加入波长筛选算法的传统建模方法和1DCNN建模方法。其中在655药片数据集中测试集决定系数为0.9563,相比于1DCNN和加入波长筛选的PLS、SVR、ELM提升了4.34%、12.56%、18.42%、11.59%;在310药片数据集中测试集决定系数为0.9574,相比于1DCNN和加入波长筛选的PLS、SVR、ELM、1DCNN提升了2.72%、8.28%、7.27%、1.17%;在玉米水分和蛋白质数据集中测试集决定系数分别为0.9803和0.9685,相比于1DCNN和加入波长筛选的PLS、SVR、ELM提升了6.24%、1.48%、1.75%、6.08%和5.81%、1.85%、1.58%、2.96%;在小麦蛋白质数据集中测试集决定系数为0.9600,相比于DCNN和加入波长筛选的PLS、SVR、ELM提升了8.67%、5.79%、7.94%、0.56%。为了验证WA-1DCNN模型结构的最佳性,在4种近红外光谱数据集上进行了改变WA-1DCNN模型结构的消融实验。研究结果表明:基于波长注意力卷积神经网络是一种结构简单、通用性强、准确率高的光谱定量分析方法,该方法对于近红外光谱定量分析具有促进作用。 展开更多
关键词 近红外光谱 定量分析 波长注意力机制 一维卷积神经网络
在线阅读 下载PDF
考虑空间相关性的MSCNN LSTM Attention能见度预测模型
13
作者 王小建 苏彤 +6 位作者 马飞 林智婕 白元旦 郭庆元 魏俊涛 黄凯 徐玉凤 《安全与环境学报》 北大核心 2025年第4期1622-1632,共11页
准确预测能见度对保障交通运输安全具有重要意义。针对现有方法在能见度预测时对影响因素空间相关性考虑不足导致预测精度较低的问题,研究构建了一种考虑空间相关性的能见度预测模型。利用一维多尺度卷积神经网络(Multi-Scale Convoluti... 准确预测能见度对保障交通运输安全具有重要意义。针对现有方法在能见度预测时对影响因素空间相关性考虑不足导致预测精度较低的问题,研究构建了一种考虑空间相关性的能见度预测模型。利用一维多尺度卷积神经网络(Multi-Scale Convolutional Neural Network, MSCNN)提取能见度以预测各影响因素下不同精细度的空间特征,并将其进行线性融合得到多因素空间特征,实现对能见度预测影响因素的空间特征提取;利用Attention机制加强对关键信息关注的优势以对长短期记忆神经网络(Long-Short Term Memory Neural Network, LSTM)方法进行改进,进而增强模型对重要时序信息关注的能力和模型预测的准确性,实现在考虑影响因素空间相关性下对能见度的预测。以2021—2023年西安市逐时气象数据和污染物数据为试验数据,采用均方根误差(RMSE)、平均绝对误差(MAE)和R2指标对模型进行评价。试验结果显示,研究模型MAE下降26.3%~39.1%,RMSE下降25%~40%,R2提升3.7%~16.4%,能见度预测精度较高。 展开更多
关键词 环境科学技术基础学科 能见度预测 空间相关性 一维多尺度卷积神经网络 长短期记忆神经网络 注意力机制
在线阅读 下载PDF
基于MC2DCNN-LSTM模型的齿轮箱全故障分类识别模型
14
作者 陈蓉 王磊 《机电工程》 北大核心 2025年第2期287-297,共11页
针对轧机齿轮箱结构复杂、故障信号识别困难、故障部位分类不清等难题,提出了一种基于多通道二维卷积神经网络(MC2DCNN)与长短期记忆神经网络(LSTM)特征融合的故障诊断方法。首先,设计了一种三通道混合编码的二维样本结构,以达到故障识... 针对轧机齿轮箱结构复杂、故障信号识别困难、故障部位分类不清等难题,提出了一种基于多通道二维卷积神经网络(MC2DCNN)与长短期记忆神经网络(LSTM)特征融合的故障诊断方法。首先,设计了一种三通道混合编码的二维样本结构,以达到故障识别与分类目的,对齿轮箱典型故障进行了自适应分类;其次,该模型将齿轮箱的垂直、水平和轴向三个方向的振动信号融合构造输入样本,结合了二维卷积神经网络与长短时记忆神经网络的优势,设计了与之对应的二维卷积神经网络结构,其相较于传统的单通道信号包含了更多的状态信息;最后,分析了轧制过程数据和已有实验数据,对齿轮故障和齿轮箱全故障进行了特征识别和分类,验证了该模型的准确率。研究结果表明:模型对齿轮箱齿面磨损、齿根裂纹、断齿以及齿面点蚀等典型故障识别的平均准确率达到95.9%,最高准确率为98.6%;相较于单通道信号,多通道信号混合编码方式构造的分类样本极大地提升了神经网络分类的准确性,解调出了更丰富的故障信息。根据轧制过程中的运行数据和实验台数据,验证了该智能诊断方法较传统方法在分类和识别准确率上更具优势,为该方法的工程应用提供了理论基础。 展开更多
关键词 高精度轧机齿轮箱 智能故障诊断 多通道二维卷积神经网络 长短期记忆神经网络 数据分类
在线阅读 下载PDF
小样本下基于DWT和2D-CNN的齿轮故障诊断方法
15
作者 宋庭新 黄继承 +2 位作者 刘尚奇 杜敏 李子平 《计算机集成制造系统》 北大核心 2025年第6期2206-2214,共9页
针对齿轮设备运维过程中故障信号较少的情况,提出一种将离散小波变换(DWT)与二维卷积神经网络(2D-CNN)相结合的故障识别方法。该方法通过将少量信号经卷积神经网络得到的分类标签与信号的小波能量进行权值分配,实现对齿轮的故障识别。... 针对齿轮设备运维过程中故障信号较少的情况,提出一种将离散小波变换(DWT)与二维卷积神经网络(2D-CNN)相结合的故障识别方法。该方法通过将少量信号经卷积神经网络得到的分类标签与信号的小波能量进行权值分配,实现对齿轮的故障识别。为了充分获取小样本中的信息来训练神经网络,利用离散小波分解、图像变换和Markov变迁场方法对样本信号进行增量和转换。通过验证齿轮箱数据集得到96%的训练准确率和87.5%的分类准确率,同时通过消融实验和对比实验证明,该方法可以有效克服小样本数据中的噪声干扰,使数据得到增强,在齿轮故障识别中具有很好的现实意义。 展开更多
关键词 故障诊断 小样本 二维卷积神经网络 小波变换
在线阅读 下载PDF
基于多熵融合和多尺度卷积神经网络的风电机组轴承故障诊断方法
16
作者 张天瑞 周连弘 《太阳能学报》 北大核心 2025年第7期429-438,共10页
针对风电机组轴承在运行过程中收集到的故障信号较弱、状态特征难以有效表征的难题,提出一种基于多熵融合与多尺度卷积神经网络的风电机组轴承故障诊断新方法。首先对原始信号进行处理,分解出多个模态分量。随后,通过计算这些模态分量... 针对风电机组轴承在运行过程中收集到的故障信号较弱、状态特征难以有效表征的难题,提出一种基于多熵融合与多尺度卷积神经网络的风电机组轴承故障诊断新方法。首先对原始信号进行处理,分解出多个模态分量。随后,通过计算这些模态分量的多种熵值,构造出多熵融合矩阵,以充分表征信号的复杂特性。在此基础上,通过在卷积神经网络中集成不同尺寸的并行卷积核,设计一种结合多熵融合与多尺度卷积神经网络的故障诊断模型。结果表明,所提出的模型方法具有较好的诊断与泛化能力。 展开更多
关键词 风电机组 故障诊断 轴承 多尺度卷积神经网络 熵特征
在线阅读 下载PDF
计及NWP信息缺失的数据共享与GRA权重优化的分布式光伏电站功率预测
17
作者 杨锡运 杨岩 +2 位作者 孟令卓超 彭琰 王晨旭 《电测与仪表》 北大核心 2025年第4期172-179,共8页
由于光伏发电的出力具有很强的间歇性和波动性,大规模光伏电站的接入会冲击电网的稳定性,因此对光伏出力进行精准预测至关重要。此外,由于部分光伏电站无法获得用于功率预测的相关数值天气预报(numerical weather prediction, NWP)信息... 由于光伏发电的出力具有很强的间歇性和波动性,大规模光伏电站的接入会冲击电网的稳定性,因此对光伏出力进行精准预测至关重要。此外,由于部分光伏电站无法获得用于功率预测的相关数值天气预报(numerical weather prediction, NWP)信息,这对电网的安全稳定运行又提出了新的挑战。基于此,文中提出一种基于数据共享和灰色关联度分析(grey relation analysis, GRA)权重优化的分布式光伏电站功率预测模型。利用K-means算法对光伏电站进行出力空间相关性聚类,构建多电站数据共享集群,通过相似日数据筛选和BP(back propagation)神经网络神经网络对单个参考电站进行出力预测,利用GRA对参考电站进行权重优化,并通过一维卷积神经网络(1D convolutional neural network, 1DCNN)对缺失NWP数据的目标电站出力进行预测。以河北省部分市十个分布式光伏电站进行算例分析,结果表明晴天预测的均方根误差为3.34%,非晴天预测的均方根误差为9.15%,具有较高的准确性和可行性,为电网的稳定运行奠定了基础。 展开更多
关键词 分布式光伏电站 空间相关性 数据共享 权重优化 一维卷积神经网络
在线阅读 下载PDF
多尺度密集交互注意力残差真实图像去噪网络
18
作者 郭业才 胡晓伟 +1 位作者 AMITAVE Saha 毛湘南 《图学学报》 北大核心 2025年第2期279-287,共9页
针对图像去噪特征提取不全面以及特征利用率低,导致生成图像不够清晰的问题,提出一种多尺度密集交互注意力残差去噪网络(MDIARN)。首先,通过多尺度非对称特征提取模块(MAFM)初步提取浅层信息特征,以确保图像特征的多样性;然后,多尺度级... 针对图像去噪特征提取不全面以及特征利用率低,导致生成图像不够清晰的问题,提出一种多尺度密集交互注意力残差去噪网络(MDIARN)。首先,通过多尺度非对称特征提取模块(MAFM)初步提取浅层信息特征,以确保图像特征的多样性;然后,多尺度级联模块(MSCM)利用多维密集交互残差单元(MDIU)对图像特征进行多维映射,并逐步级联以增强模型之间的信息传递和交互性,充分拟合训练数据;引入双路全局注意力模块(DGAM)对多级特征进行全局联合学习,获取更具有判别性的特征信息;跳跃连接促进结构之间的参数共享,使不同维度的特征充分融合,保证信息的完整性;最后,采用残差学习构建出清晰的去噪图像。结果表明,该算法在真实噪声数据集(DND和SIDD)上峰值信噪比分别为39.80 dB和39.62 dB,结构相似性分别为95.4%和95.8%,均优于主流去噪算法。此外,该算法在低光度场景下应用也能保留更多细节,从而显著提升图像质量。 展开更多
关键词 图像去噪 多尺度特征提取 多维密集交互 卷积神经网络 注意力
在线阅读 下载PDF
基于一维卷积神经网络与自编码算法的松属物种鉴别机制
19
作者 陈冬英 翁伟雄 +1 位作者 陈培亮 魏建崇 《生态学报》 北大核心 2025年第5期2401-2411,共11页
松属植物具有重要的生态和经济价值。但松属植物的基因组庞大、分子进化慢,物种的特征相似性极高,辨别难度大。为解决传统松属物种鉴别方法存在的成本高、耗时长、准确率低、操作复杂等问题,提出了一种基于松属近红外光谱数据(NIRS)并... 松属植物具有重要的生态和经济价值。但松属植物的基因组庞大、分子进化慢,物种的特征相似性极高,辨别难度大。为解决传统松属物种鉴别方法存在的成本高、耗时长、准确率低、操作复杂等问题,提出了一种基于松属近红外光谱数据(NIRS)并结合一维连续型卷积神经网络(1D⁃CS⁃CNN)与自编码技术的松属物种检测机制。使用更高效率的连续型结构替代传统1D⁃CNN模型中隐含层结构,并针对松属NIRS数据适应性改进为1D⁃CS⁃CNN模型,使其可直接应用于一维NIRS数据。结合自编码器的重构误差设计一种考虑未知类别的松属物种鉴别方法,通过待测样本的自编码重构误差来解决卷积神经网络置信度过高的问题,将修正的置信度与预先设定的阈值进行比较,判断该样本是否为未知品种。实验结果表明,1D⁃CS⁃CNN训练集与测试集准确率均达到近100%,损失值收敛为0.015,改进后的1D⁃CS⁃CNN模型识别速度更快;同时,自编码模型对未知类别松属检测机制识别率为99%。实验结果证明,该模型可快速高效分类出不同松属物种,同时检测出松属新物种。 展开更多
关键词 松属物种 近红外光谱(NIRS) 自编码器 一维连续卷积神经网络(1D⁃CS⁃CNN) 鉴别
在线阅读 下载PDF
基于域迁移的滚动轴承故障诊断研究
20
作者 曹梦婷 谷玉海 +1 位作者 王红军 徐小力 《机械设计与制造》 北大核心 2025年第4期269-273,共5页
目前基于深度学习的滚动轴承故障诊断方法已经在机械设备领域得到了广泛的学习,而进行深度学习训练需要海量数据样本,针对深度学习方法在这一方面的不足,这里提出一种基于域迁移学习的滚动轴承故障诊断方法,能够在小样本数据量的前提下... 目前基于深度学习的滚动轴承故障诊断方法已经在机械设备领域得到了广泛的学习,而进行深度学习训练需要海量数据样本,针对深度学习方法在这一方面的不足,这里提出一种基于域迁移学习的滚动轴承故障诊断方法,能够在小样本数据量的前提下依旧对滚动轴承进行故障诊断并取得良好的诊断结果。首先,根据一维卷积神经网络和长短期记忆网络构造一个域迁移深度学习网络,将获得的源域数据与目标域数据作为输入,其次,经过网络训练之后,对提取出的故障特征分类。实验结果证明,在小样本数据量的前提下,采用的方法和基于无迁移的深度学习故障诊断方法相比,故障特征的分类精度更高,提高了故障诊断的正确率。 展开更多
关键词 故障诊断 域迁移 一维卷积神经网络 长短期记忆网络
在线阅读 下载PDF
上一页 1 2 20 下一页 到第
使用帮助 返回顶部