期刊文献+
共找到33篇文章
< 1 2 >
每页显示 20 50 100
融合信息瓶颈与图卷积的跨域推荐算法
1
作者 王永贵 胡鹏程 +2 位作者 时启文 赵炀 邹赫宇 《计算机工程与应用》 CSCD 北大核心 2024年第15期77-90,共14页
基于迁移学习的跨域推荐可以有效地学习连接源域和目标域的映射函数,但其性能仍然受到表征质量不高和负迁移问题的影响,不能有效地为冷启动用户进行推荐,为此提出了一种融合信息瓶颈与图卷积网络的跨域推荐模型(IBGC)。利用图卷积神经... 基于迁移学习的跨域推荐可以有效地学习连接源域和目标域的映射函数,但其性能仍然受到表征质量不高和负迁移问题的影响,不能有效地为冷启动用户进行推荐,为此提出了一种融合信息瓶颈与图卷积网络的跨域推荐模型(IBGC)。利用图卷积神经网络聚合有关联的用户-用户和项目-项目信息;利用注意力机制学习用户和项目偏好,以提高节点特征表示质量;考虑到两个领域的信息交互,将重叠用户进行嵌入表示的同时限制特定信息的编码,利用信息瓶颈理论设计了三种正则化器,以捕获域内和跨域用户-项目的相关性,并将不同领域的重叠用户表征对齐以解决负迁移问题。在Amazon数据集中的四对公开数据集上进行实验,实验结果表明该模型在MRR、HR@K和NDCG@K三个推荐性能指标上的表现均优于基线模型,在四对数据集上与最优对比基线模型相比,MRR平均提升34.36%,HR@10平均提升34.94%,NDCG@10平均提升36.83%,证明了IBGC模型的有效性。 展开更多
关键词 跨域推荐算法 用户冷启动推荐 图卷积神经网络 信息瓶颈理论 网络嵌入学习 注意力机制
在线阅读 下载PDF
军用信息系统智能化的挑战与趋势 被引量:34
2
作者 郭圣明 贺筱媛 +2 位作者 胡晓峰 吴琳 欧微 《控制理论与应用》 EI CAS CSCD 北大核心 2016年第12期1562-1571,共10页
军用信息系统作为体系能力的倍增器,最近几十年取得了突出的成就.但也面临极大的挑战,尤其是以理解、推理、决策为代表的智能化认知技术成为当前信息系统智能化发展的瓶颈.本文在剖析当前军用信息系统智能化需求的基础上,深入分析了以&q... 军用信息系统作为体系能力的倍增器,最近几十年取得了突出的成就.但也面临极大的挑战,尤其是以理解、推理、决策为代表的智能化认知技术成为当前信息系统智能化发展的瓶颈.本文在剖析当前军用信息系统智能化需求的基础上,深入分析了以"深绿"计划为代表的指挥信息系统智能化发展现状和不足,而以"深度学习"为代表的智能化认知技术发展为军用信息系统智能化建设带来了机遇和挑战;综合考虑体系作战的复杂性特点,提出需要重点突破的智能认知关键技术;最后,结合国防大学兵棋演习数据,采用深度学习等技术,初步实现了对作战体系威胁评估和作战态势优劣的智能化判断,展示了以深度学习为代表的智能认知技术在军事信息系统智能化建设中的潜在应用价值. 展开更多
关键词 军用信息系统 深度学习 多层神经网络 威胁评估 态势判断
在线阅读 下载PDF
多层前馈神经网络的学习和综合算法 被引量:33
3
作者 张铃 吴福朝 +1 位作者 张钹 韩玫 《软件学报》 EI CSCD 北大核心 1995年第7期440-448,共9页
本文提出多层前馈网络的一种新的学习和综合算法──FP算法,并证明由此算法得到的网络作为通用联想记忆器时,具有如下优点:(1)每个样本都是吸引中心;(2)每个样本的吸引半径达到最大值;(3)网络没有假吸引中心;(4)网... 本文提出多层前馈网络的一种新的学习和综合算法──FP算法,并证明由此算法得到的网络作为通用联想记忆器时,具有如下优点:(1)每个样本都是吸引中心;(2)每个样本的吸引半径达到最大值;(3)网络没有假吸引中心;(4)网络具有最少的元件个数;(5)学习的复杂性达到最优(就其复杂性的阶而言).故此网络在性能、结构、计算复杂性等方面均达到很好状态. 展开更多
关键词 神经网络 多层前馈网络 FP算法
在线阅读 下载PDF
多层前向网络研究进展及若干问题 被引量:47
4
作者 董聪 郦正能 +1 位作者 夏人伟 何庆芝 《力学进展》 EI CSCD 北大核心 1995年第2期186-196,共11页
本文概述了多层前向网络研究的发展历史,对其中有代表性的若干成就进行了较为系统的介绍和评论,分析了当前研究工作中存在的一些问题,提出了解决这些问题的几种可行方案。在对多层前向网络的有效逼近机理进行深入剖析的基础上,提出... 本文概述了多层前向网络研究的发展历史,对其中有代表性的若干成就进行了较为系统的介绍和评论,分析了当前研究工作中存在的一些问题,提出了解决这些问题的几种可行方案。在对多层前向网络的有效逼近机理进行深入剖析的基础上,提出了合理的有限规模多层前向网络应当遵循的若干构造原则。 展开更多
关键词 多层前向网络 学习算法 神经网络
在线阅读 下载PDF
预测城市用水量的人工神经网络模型研究 被引量:19
5
作者 俞亭超 张土乔 +1 位作者 毛根海 吴小刚 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2004年第9期1156-1161,共6页
为了提高多层前馈神经网络权的学习效率,引入变尺度方法来训练神经网络的权值,并根据训练误差自适应调整学习系数和动量因子.将该方法应用于城市用水量预测中,建立了非线性人工神经网络预测模型.该模型考虑了城市工业用水重复利用率、... 为了提高多层前馈神经网络权的学习效率,引入变尺度方法来训练神经网络的权值,并根据训练误差自适应调整学习系数和动量因子.将该方法应用于城市用水量预测中,建立了非线性人工神经网络预测模型.该模型考虑了城市工业用水重复利用率、用水人口、经济发展等众多因素对用水量需求的影响,具备系统决策功能.杭州市预测实例表明,建立的模型及其相应计算方法具有较高的预测精度和准确度. 展开更多
关键词 城市用水量 人工神经网络模型 预测模型 变尺度法
在线阅读 下载PDF
基于深度学习的混合兴趣点推荐算法 被引量:12
6
作者 冯浩 黄坤 +3 位作者 李晶 高榕 刘东华 宋成芳 《电子与信息学报》 EI CSCD 北大核心 2019年第4期880-887,共8页
针对现有兴趣点推荐的初始化和忽视评论信息语义上下文信息的问题,将深度学习融入推荐系统中已经成为兴趣点推荐研究的热点之一。该文提出一种基于深度学习的混合兴趣点推荐模型(MFM-HNN)。该模型基于神经网络融合评论信息与用户签到信... 针对现有兴趣点推荐的初始化和忽视评论信息语义上下文信息的问题,将深度学习融入推荐系统中已经成为兴趣点推荐研究的热点之一。该文提出一种基于深度学习的混合兴趣点推荐模型(MFM-HNN)。该模型基于神经网络融合评论信息与用户签到信息来提高兴趣点推荐的性能。具体地,利用卷积神经网络学习评论信息的特征表示,利用降噪自动编码对用户签到信息进行初始化。进而,基于扩展的矩阵分解模型融合评论信息特征和用户签到信息的初始值进行兴趣点推荐。在真实签到数据集上进行实验,结果表明所提MFM-HNN模型相比其他先进的兴趣点推荐具有更好的推荐性能。 展开更多
关键词 推荐算法 兴趣点 矩阵分解 神经网络 深度学习
在线阅读 下载PDF
多层反馈神经网络的FP学习和综合算法 被引量:24
7
作者 张铃 张钹 《软件学报》 EI CSCD 北大核心 1997年第4期252-258,共7页
本文给出多层反馈神经网络的FP学习和综合算法,并讨论此类网络的性质,指出将它应用于聚类分析能给出不粒度的聚类,且具有收敛速度快(是样本个数的线性函数)、算法计算量少(是样本个数和输入、输出维数的双线性函数)、网络元件... 本文给出多层反馈神经网络的FP学习和综合算法,并讨论此类网络的性质,指出将它应用于聚类分析能给出不粒度的聚类,且具有收敛速度快(是样本个数的线性函数)、算法计算量少(是样本个数和输入、输出维数的双线性函数)、网络元件个数少、权系数简单(只取3个值)、网络容易硬件实现等优点. 展开更多
关键词 多层反馈 神经网络 学习算法 聚类
在线阅读 下载PDF
基于卷积神经网络的语句级新闻分类算法 被引量:11
8
作者 曾凡锋 李玉珂 肖珂 《计算机工程与设计》 北大核心 2020年第4期978-982,共5页
针对传统的中文文本分类在海量的互联网信息中难以胜任的现状,提出一种语句级的卷积神经网络中文新闻分类方案。通过信息提取算法从长短不一的新闻数据中提取固定大小的新闻摘要,压缩输入量的同时统一输入格式。信息提取时,通过对TF-ID... 针对传统的中文文本分类在海量的互联网信息中难以胜任的现状,提出一种语句级的卷积神经网络中文新闻分类方案。通过信息提取算法从长短不一的新闻数据中提取固定大小的新闻摘要,压缩输入量的同时统一输入格式。信息提取时,通过对TF-IDF算法进行改进提升新闻摘要的质量,结合word2vec技术和卷积神经网络完成文本分类任务。与传统方法相比,词向量模型的引入弥补了传统词袋模型的缺陷,且语句的语义远比词的更加全面,使用语句进行分类更加可靠。通过实验对比验证了该方案具有较好的性能。 展开更多
关键词 文本分类 深度学习 卷积神经网络 词向量 TF-IDF算法 信息抽取
在线阅读 下载PDF
一种基于BP算法的融合神经网络 被引量:6
9
作者 苏羽 赵海 +1 位作者 王刚 苏威积 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2003年第11期1037-1040,共4页
针对水电仿真系统水机温度建模中存在非线性动态数学模型问题,提出了一种采用融合神经网络的温度模型·并且为消除应用中神经网络训练速度慢、容易陷入局部极值的影响,采用了可变学习速度的VLBP算法作为更新网络梯度和权值的算法... 针对水电仿真系统水机温度建模中存在非线性动态数学模型问题,提出了一种采用融合神经网络的温度模型·并且为消除应用中神经网络训练速度慢、容易陷入局部极值的影响,采用了可变学习速度的VLBP算法作为更新网络梯度和权值的算法·在该模型的实际应用中,首先设置多个传感器采集温度参数,然后使用采集数据对神经网络进行离线训练,而后使用训练完成的网络对水机温度参数进行实时在线预测·通过现场数据和网络预测数据的对比分析,证明该模型的实际准确率可达96 5%,可以满足实际仿真的要求· 展开更多
关键词 融合神经网络 VLBP算法 水电仿真 信息融合 温度模型
在线阅读 下载PDF
多层前馈神经网络快速学习算法的实现 被引量:8
10
作者 杜利民 侯自强 《电子学报》 EI CAS CSCD 北大核心 1992年第10期61-68,共8页
本文评述优化学习率BP(Back Propagation)算法,给出应用研究中几种常用网络结构的优化学习率的计算公式,讨论与算法实现相关的一些问题.模拟实验结果进一步揭示算法的快速性质.
关键词 神经网络 预测 学习算法
在线阅读 下载PDF
过程神经元网络及其在时变信息处理中的应用 被引量:12
11
作者 何新贵 许少华 《智能系统学报》 2006年第1期1-8,共8页
针对时变信息处理和动态系统建模等类问题,建立了输入输出均为时变函数的过程神经元网络和有理式过程神经元网络2种网络模型.在输入输出为时变函数的过程神经元网络中,过程神经元的时间累积算子取为对时间的积分或其他代数运算,它的时... 针对时变信息处理和动态系统建模等类问题,建立了输入输出均为时变函数的过程神经元网络和有理式过程神经元网络2种网络模型.在输入输出为时变函数的过程神经元网络中,过程神经元的时间累积算子取为对时间的积分或其他代数运算,它的时空聚合机制和激励能同时反映外部时变输入信号对输出结果的空间聚合作用和时间累积效应,可实现非线性系统输入、输出之间的复杂映射关系.在有理式过程神经元网络中,其基本信息处理单元为由2个成对偶出现的过程神经元组成,逻辑上分为分子和分母2部分,通过有理式整合后输出,可有效提高过程神经元网络对带有奇异值过程函数的柔韧逼近性和在奇异值点附近反应的灵敏性.分析了2种过程神经元网络模型的性质,给出了具体学习算法,并以油田开发过程模拟和旋转机械故障诊断问题为例,验证了这2种网络模型在时变信息处理中的有效性. 展开更多
关键词 过程神经元网络 时变系统 信息处理 学习算法 仿真试验
在线阅读 下载PDF
热释放率计算和预测的神经网络方法 被引量:2
12
作者 邓超 吴龙标 +1 位作者 范维澄 谭营 《中国科学技术大学学报》 CAS CSCD 北大核心 1999年第2期175-180,共6页
基于多层前馈神经网络提出了火灾实验中不同材料热释放率的学习算法和预测技术.同时,将具有全局收敛特性的混合共轭梯度(MCG)算法应用于该问题中多层前馈神经网络的训练,克服了传统BP算法收敛速度慢,推广性能差的缺陷.文中... 基于多层前馈神经网络提出了火灾实验中不同材料热释放率的学习算法和预测技术.同时,将具有全局收敛特性的混合共轭梯度(MCG)算法应用于该问题中多层前馈神经网络的训练,克服了传统BP算法收敛速度慢,推广性能差的缺陷.文中对MCG方法进行了大量模拟,并将模拟结果与BP算法及带有动量项的BP算法作了全面比较。 展开更多
关键词 神经网络 混合共轭梯度 热释放率 火灾 火焰
在线阅读 下载PDF
基于卡尔曼滤波的二次型神经网络学习算法及收敛性分析 被引量:2
13
作者 贺昱曜 方忠 徐德民 《系统工程与电子技术》 EI CSCD 1999年第8期57-59,共3页
提出了二次型多层前馈神经网络的卡尔曼滤波学习算法,并证明了该算法的收敛性。与文献[2,3]中的学习算法和经典的误差反向传播学习算法相比,新的学习算法具有更快的学习速度、良好的泛化能力,并且对学习率有很好的鲁棒性,不容... 提出了二次型多层前馈神经网络的卡尔曼滤波学习算法,并证明了该算法的收敛性。与文献[2,3]中的学习算法和经典的误差反向传播学习算法相比,新的学习算法具有更快的学习速度、良好的泛化能力,并且对学习率有很好的鲁棒性,不容易陷入局部极小点。仿真实验结果表明了新算法的有效性。 展开更多
关键词 卡尔曼滤波 神经网络 学习算法 收敛性
在线阅读 下载PDF
神经网的提示学习 被引量:1
14
作者 陈明 李明慧 《小型微型计算机系统》 CSCD 北大核心 1993年第5期16-19,共4页
本文提出了一种新的多层神经网的学习方法。这种学习方法借助提示信息加速学习过程。其次也讨论了如何获取提示信息和如何将提示信息并入学习算法。
关键词 神经网络 学习算法 揭示信息
在线阅读 下载PDF
基于注意力机制与改进TF-IDF的推荐算法 被引量:7
15
作者 李昆仑 于志波 +1 位作者 翟利娜 赵佳耀 《计算机工程》 CAS CSCD 北大核心 2021年第8期69-77,共9页
针对传统推荐系统主要依赖用户对物品的评分数据而无法学习到用户和项目的深层次特征的问题,提出基于注意力机制与改进TF-IDF的推荐算法(AMITI)。通过将双层注意力机制引入并行的神经网络推荐模型,提高模型对重要特征的挖掘能力。基于... 针对传统推荐系统主要依赖用户对物品的评分数据而无法学习到用户和项目的深层次特征的问题,提出基于注意力机制与改进TF-IDF的推荐算法(AMITI)。通过将双层注意力机制引入并行的神经网络推荐模型,提高模型对重要特征的挖掘能力。基于用户评分及项目类别改进TF-IDF,依据项目类别权重将推荐结果分类以构建不同类型的项目组并完成推荐。实验结果表明,AMITI算法能提高对文本中重要内容的关注度以及项目分配的注意力权重,有效提升推荐精度并在实现项目组推荐后改善推荐效果。 展开更多
关键词 多层感知机 注意力机制 卷积神经网络 推荐算法 深度学习
在线阅读 下载PDF
一种基于角点与BP神经网络的文本检测及定位算法 被引量:1
16
作者 唐思源 高琦 邢俊凤 《现代电子技术》 北大核心 2016年第4期112-115,共4页
检测并提取视频图像中的文本信息对视频图像和内容的理解意义重大。以现有的文本检测算法为基础,提出一种基于角点与BP神经网络相结合的文本检测算法。该算法首先应用多尺度角点算法提取文本角点信息并初步定位文本行,接着提取文本特征... 检测并提取视频图像中的文本信息对视频图像和内容的理解意义重大。以现有的文本检测算法为基础,提出一种基于角点与BP神经网络相结合的文本检测算法。该算法首先应用多尺度角点算法提取文本角点信息并初步定位文本行,接着提取文本特征,最后应用BP神经网络精确定位文本。实验结果表明,此算法与经典方法相比具有更高的正确率和鲁棒性,视频中文本的正确检测率达到90.3%。 展开更多
关键词 文本检测算法 多尺度角点算法 BP神经网络 文本信息提取
在线阅读 下载PDF
基于多特征多分类器的汉语手指字母流的识别系统
17
作者 吴江琴 高文 陈熙霖 《自动化学报》 EI CSCD 北大核心 2001年第6期836-840,共5页
手指语是用手指指式进行交流 ,一个指式代表一个汉语拼音字母 ,按照汉语拼音方案拼成普通话 .文中提出了一种基于多特征多分类器的汉语手指语识别方法 ,并利用该方法建造了手指字母流识别系统 .实验表明 。
关键词 手语识别 多特征多分类器 神经网络 汉语手指字母流识别系统
在线阅读 下载PDF
一种基于U-D分解卡尔曼滤波多层感知器学习算法
18
作者 马晓敏 《信号处理》 CSCD 北大核心 1995年第4期276-282,共7页
在研究多层感知器结构后,提出一种利用U-D分解卡尔曼滤波训练多层网的新算法.仿真结果表明:与BP算法比较,此算法有着学习速度快、数值稳定性好、对学习参数不敏感、能避免局部极小点等特点。
关键词 神经网络 多层感知器 学习算法 卡尔曼滤波
在线阅读 下载PDF
关于深度学习的综述与讨论 被引量:170
19
作者 胡越 罗东阳 +2 位作者 花奎 路海明 张学工 《智能系统学报》 CSCD 北大核心 2019年第1期1-19,共19页
机器学习是通过计算模型和算法从数据中学习规律的一门学问,在各种需要从复杂数据中挖掘规律的领域中有很多应用,已成为当今广义的人工智能领域最核心的技术之一。近年来,多种深度神经网络在大量机器学习问题上取得了令人瞩目的成果,形... 机器学习是通过计算模型和算法从数据中学习规律的一门学问,在各种需要从复杂数据中挖掘规律的领域中有很多应用,已成为当今广义的人工智能领域最核心的技术之一。近年来,多种深度神经网络在大量机器学习问题上取得了令人瞩目的成果,形成了机器学习领域最亮眼的一个新分支——深度学习,也掀起了机器学习理论、方法和应用研究的一个新高潮。对深度学习代表性方法的核心原理和典型优化算法进行了综述,回顾与讨论了深度学习与以往机器学习方法之间的联系与区别,并对深度学习中一些需要进一步研究的问题进行了初步讨论。 展开更多
关键词 深度学习 机器学习 卷积神经网络 递归神经网络 多层感知器 自编码机 学习算法 机器学习理论
在线阅读 下载PDF
一种改进的卷积神经网络恶意域名检测算法 被引量:17
20
作者 杨路辉 刘光杰 +3 位作者 翟江涛 刘伟伟 白惠文 戴跃伟 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2020年第1期37-43,共7页
针对现有检测方法对算法生成的恶意域名检测效率不高,尤其对几种难检测的恶意域名类型检测率低的问题,提出了一种改进的基于卷积神经网络的恶意域名检测算法。该算法在现有的卷积神经网络模型的基础上,增加了提取更深层字符级特征的卷... 针对现有检测方法对算法生成的恶意域名检测效率不高,尤其对几种难检测的恶意域名类型检测率低的问题,提出了一种改进的基于卷积神经网络的恶意域名检测算法。该算法在现有的卷积神经网络模型的基础上,增加了提取更深层字符级特征的卷积分支,从而同时提取恶意域名的浅层和深层字符级特征并融合;引入一种聚焦损失函数以解决样本难易程度和数量的双重不平衡导致检测率低的问题,可提高对难样本的检测准确率。改进后的算法对20种恶意域名的平均检测准确率为97.62%,与原算法相比提高了0.94%;对4种较难检测域名的检测准确率分别提高了3.71%、4.6%、11.18%和17.8%。实验结果表明,改进的算法能够提高对恶意域名的检测准确率,尤其能够显著提升对部分难检测域名的检测准确率。 展开更多
关键词 卷积神经网络 域名生成算法 深度学习 信息安全
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部