To address the limitations of existing coupling methods in aero-engine system simulation,which fail to adaptively adjust iterative parameters and coupling relationships,which can result in low efficiency and in⁃stabil...To address the limitations of existing coupling methods in aero-engine system simulation,which fail to adaptively adjust iterative parameters and coupling relationships,which can result in low efficiency and in⁃stability,this study introduces a‘Dynamic Event-Driven Co-Simulation’algorithm integrated with decision tree algorithms.This algorithm separates the overall coupling relationships and the main solver from the primary mod⁃el,utilizing a dynamic event monitoring module to adaptively adjust simulation strategies,including iteration pa⁃rameters,coupling relationships,and convergence criteria.This facilitates efficient adaptive simulations of dy⁃namic events while balancing solution accuracy and computational efficiency.The research focuses on a twinshaft turbofan engine,establishing six system-level models that encompass overall performance and various sub⁃systems based on three coupling methods,along with a multidisciplinary multi-fidelity simulation framework in⁃corporating a 3D CFD nozzle model.The study tests both model exchange and coupled simulation methods under a 14 s transient acceleration and deceleration scenario.In a 100%throttle condition,a high-fidelity nozzle model is used to analyze the sensitivity of different convergence criteria on computational efficiency and accuracy.Re⁃sults indicate that the accuracy and efficiency achieved with this method are comparable to those of PROOSIS soft⁃ware(18 s and 35 s,respectively),while being 71%more efficient than Simulink software(62 s and 120 s,re⁃spectively).Furthermore,appropriately relaxing the convergence criteria for the 0D model(from 10-6 to 10-4)while enhancing those for the 3D model(from 3000 steps to 6000 steps)can effectively balance computational accuracy and efficiency.展开更多
The on line computational burden related to model predictive control (MPC) of large scale constrained systems hampers its real time applications and limits it to slow dynamic process with moderate number of inputs....The on line computational burden related to model predictive control (MPC) of large scale constrained systems hampers its real time applications and limits it to slow dynamic process with moderate number of inputs. To avoid this, an efficient and fast algorithm based on aggregation optimization is proposed in this paper. It only optimizes the current control action at time instant k , while other future control sequences in the optimization horizon are approximated off line by the linear feedback control sequence, so the on line optimization can be converted into a low dimensional quadratic programming problem. Input constraints can be well handled in this scheme. The comparable performance is achieved with existing standard model predictive control algorithm. Simulation results well demonstrate its effectiveness.展开更多
The electrode regulator system is a complex system with many variables, strong coupling and strong nonlinearity, while conventional control methods such as proportional integral derivative (PID) can not meet the req...The electrode regulator system is a complex system with many variables, strong coupling and strong nonlinearity, while conventional control methods such as proportional integral derivative (PID) can not meet the requirements. A robust adaptive neural network controller (RANNC) for electrode regulator system was proposed. Artificial neural networks were established to learn the system dynamics. The nonlinear control law was derived directly based on an input-output approximating method via the Taylor expansion, which avoids complex control development and intensive computation. The stability of the closed-loop system was established by the Lyapunov method. The current fluctuation relative percentage is less than ±8% and heating rate is up to 6.32 ℃/min when the proposed controller is used. The experiment results show that the proposed control scheme is better than inverse neural network controller (INNC) and PID controller (PIDC).展开更多
变异函数量化了空间2点地质属性的变异性,对地质统计分析至关重要。当地质数据随空间坐标呈现趋势变化时,正确选择和估计变异函数十分困难。为实现变异函数的模型选择和参数估计,提出了基于贝叶斯理论的变异函数选择方法,采用拉普拉斯...变异函数量化了空间2点地质属性的变异性,对地质统计分析至关重要。当地质数据随空间坐标呈现趋势变化时,正确选择和估计变异函数十分困难。为实现变异函数的模型选择和参数估计,提出了基于贝叶斯理论的变异函数选择方法,采用拉普拉斯近似方法将后验概率分布近似为高斯分布。首先计算出参数的后验概率分布,随后分别计算每个备选变异函数的贝叶斯模型证据,以确定最优模型。探讨了3种模型选择方法在变异函数选择中的适用性,包括贝叶斯模型证据(BME)、Akaike information criterion(AIC)识别准则和Bayesian information criterion(BIC)识别准则。通过实测静力触探试验的锥端阻力数据,说明了该方法,并从模型拟合度和复杂度罚值2个方面比较3种方法在变异函数模型选择中的差异性。研究表明,给定试验数据条件下,BME能够合理地考虑变异函数的拟合度和复杂性;而AIC和BIC识别准则在模型参数个数相同时,仅能反映不同变异函数的拟合度差异,因此,在这种情况下推荐采用BME选择变异函数。本研究方法能够在考虑趋势项参数条件下合理地选择地质统计学变异函数,所选最优变异函数与试验变异函数较一致,为地质统计学分析提供了有效的参考。展开更多
文摘To address the limitations of existing coupling methods in aero-engine system simulation,which fail to adaptively adjust iterative parameters and coupling relationships,which can result in low efficiency and in⁃stability,this study introduces a‘Dynamic Event-Driven Co-Simulation’algorithm integrated with decision tree algorithms.This algorithm separates the overall coupling relationships and the main solver from the primary mod⁃el,utilizing a dynamic event monitoring module to adaptively adjust simulation strategies,including iteration pa⁃rameters,coupling relationships,and convergence criteria.This facilitates efficient adaptive simulations of dy⁃namic events while balancing solution accuracy and computational efficiency.The research focuses on a twinshaft turbofan engine,establishing six system-level models that encompass overall performance and various sub⁃systems based on three coupling methods,along with a multidisciplinary multi-fidelity simulation framework in⁃corporating a 3D CFD nozzle model.The study tests both model exchange and coupled simulation methods under a 14 s transient acceleration and deceleration scenario.In a 100%throttle condition,a high-fidelity nozzle model is used to analyze the sensitivity of different convergence criteria on computational efficiency and accuracy.Re⁃sults indicate that the accuracy and efficiency achieved with this method are comparable to those of PROOSIS soft⁃ware(18 s and 35 s,respectively),while being 71%more efficient than Simulink software(62 s and 120 s,re⁃spectively).Furthermore,appropriately relaxing the convergence criteria for the 0D model(from 10-6 to 10-4)while enhancing those for the 3D model(from 3000 steps to 6000 steps)can effectively balance computational accuracy and efficiency.
文摘The on line computational burden related to model predictive control (MPC) of large scale constrained systems hampers its real time applications and limits it to slow dynamic process with moderate number of inputs. To avoid this, an efficient and fast algorithm based on aggregation optimization is proposed in this paper. It only optimizes the current control action at time instant k , while other future control sequences in the optimization horizon are approximated off line by the linear feedback control sequence, so the on line optimization can be converted into a low dimensional quadratic programming problem. Input constraints can be well handled in this scheme. The comparable performance is achieved with existing standard model predictive control algorithm. Simulation results well demonstrate its effectiveness.
基金Project(N100604002) supported by the Fundamental Research Funds for Central Universities of ChinaProject(61074074) supported by the National Natural Science Foundation of China
文摘The electrode regulator system is a complex system with many variables, strong coupling and strong nonlinearity, while conventional control methods such as proportional integral derivative (PID) can not meet the requirements. A robust adaptive neural network controller (RANNC) for electrode regulator system was proposed. Artificial neural networks were established to learn the system dynamics. The nonlinear control law was derived directly based on an input-output approximating method via the Taylor expansion, which avoids complex control development and intensive computation. The stability of the closed-loop system was established by the Lyapunov method. The current fluctuation relative percentage is less than ±8% and heating rate is up to 6.32 ℃/min when the proposed controller is used. The experiment results show that the proposed control scheme is better than inverse neural network controller (INNC) and PID controller (PIDC).
文摘变异函数量化了空间2点地质属性的变异性,对地质统计分析至关重要。当地质数据随空间坐标呈现趋势变化时,正确选择和估计变异函数十分困难。为实现变异函数的模型选择和参数估计,提出了基于贝叶斯理论的变异函数选择方法,采用拉普拉斯近似方法将后验概率分布近似为高斯分布。首先计算出参数的后验概率分布,随后分别计算每个备选变异函数的贝叶斯模型证据,以确定最优模型。探讨了3种模型选择方法在变异函数选择中的适用性,包括贝叶斯模型证据(BME)、Akaike information criterion(AIC)识别准则和Bayesian information criterion(BIC)识别准则。通过实测静力触探试验的锥端阻力数据,说明了该方法,并从模型拟合度和复杂度罚值2个方面比较3种方法在变异函数模型选择中的差异性。研究表明,给定试验数据条件下,BME能够合理地考虑变异函数的拟合度和复杂性;而AIC和BIC识别准则在模型参数个数相同时,仅能反映不同变异函数的拟合度差异,因此,在这种情况下推荐采用BME选择变异函数。本研究方法能够在考虑趋势项参数条件下合理地选择地质统计学变异函数,所选最优变异函数与试验变异函数较一致,为地质统计学分析提供了有效的参考。