期刊文献+
共找到3,986篇文章
< 1 2 200 >
每页显示 20 50 100
Sound event localization and detection based on deep learning
1
作者 ZHAO Dada DING Kai +2 位作者 QI Xiaogang CHEN Yu FENG Hailin 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第2期294-301,共8页
Acoustic source localization(ASL)and sound event detection(SED)are two widely pursued independent research fields.In recent years,in order to achieve a more complete spatial and temporal representation of sound field,... Acoustic source localization(ASL)and sound event detection(SED)are two widely pursued independent research fields.In recent years,in order to achieve a more complete spatial and temporal representation of sound field,sound event localization and detection(SELD)has become a very active research topic.This paper presents a deep learning-based multioverlapping sound event localization and detection algorithm in three-dimensional space.Log-Mel spectrum and generalized cross-correlation spectrum are joined together in channel dimension as input features.These features are classified and regressed in parallel after training by a neural network to obtain sound recognition and localization results respectively.The channel attention mechanism is also introduced in the network to selectively enhance the features containing essential information and suppress the useless features.Finally,a thourough comparison confirms the efficiency and effectiveness of the proposed SELD algorithm.Field experiments show that the proposed algorithm is robust to reverberation and environment and can achieve higher recognition and localization accuracy compared with the baseline method. 展开更多
关键词 sound event localization and detection(SELD) deep learning convolutional recursive neural network(CRNN) channel attention mechanism
在线阅读 下载PDF
Rapid urban flood forecasting based on cellular automata and deep learning
2
作者 BAI Bing DONG Fei +1 位作者 LI Chuanqi WANG Wei 《水利水电技术(中英文)》 北大核心 2024年第12期17-28,共12页
[Objective]Urban floods are occurring more frequently because of global climate change and urbanization.Accordingly,urban rainstorm and flood forecasting has become a priority in urban hydrology research.However,two-d... [Objective]Urban floods are occurring more frequently because of global climate change and urbanization.Accordingly,urban rainstorm and flood forecasting has become a priority in urban hydrology research.However,two-dimensional hydrodynamic models execute calculations slowly,hindering the rapid simulation and forecasting of urban floods.To overcome this limitation and accelerate the speed and improve the accuracy of urban flood simulations and forecasting,numerical simulations and deep learning were combined to develop a more effective urban flood forecasting method.[Methods]Specifically,a cellular automata model was used to simulate the urban flood process and address the need to include a large number of datasets in the deep learning process.Meanwhile,to shorten the time required for urban flood forecasting,a convolutional neural network model was used to establish the mapping relationship between rainfall and inundation depth.[Results]The results show that the relative error of forecasting the maximum inundation depth in flood-prone locations is less than 10%,and the Nash efficiency coefficient of forecasting inundation depth series in flood-prone locations is greater than 0.75.[Conclusion]The result demonstrated that the proposed method could execute highly accurate simulations and quickly produce forecasts,illustrating its superiority as an urban flood forecasting technique. 展开更多
关键词 urban flooding flood-prone location cellular automata deep learning convolutional neural network rapid forecasting
在线阅读 下载PDF
A survey of fine-grained visual categorization based on deep learning
3
作者 XIE Yuxiang GONG Quanzhi +2 位作者 LUAN Xidao YAN Jie ZHANG Jiahui 《Journal of Systems Engineering and Electronics》 CSCD 2024年第6期1337-1356,共20页
Deep learning has achieved excellent results in various tasks in the field of computer vision,especially in fine-grained visual categorization.It aims to distinguish the subordinate categories of the label-level categ... Deep learning has achieved excellent results in various tasks in the field of computer vision,especially in fine-grained visual categorization.It aims to distinguish the subordinate categories of the label-level categories.Due to high intra-class variances and high inter-class similarity,the fine-grained visual categorization is extremely challenging.This paper first briefly introduces and analyzes the related public datasets.After that,some of the latest methods are reviewed.Based on the feature types,the feature processing methods,and the overall structure used in the model,we divide them into three types of methods:methods based on general convolutional neural network(CNN)and strong supervision of parts,methods based on single feature processing,and meth-ods based on multiple feature processing.Most methods of the first type have a relatively simple structure,which is the result of the initial research.The methods of the other two types include models that have special structures and training processes,which are helpful to obtain discriminative features.We conduct a specific analysis on several methods with high accuracy on pub-lic datasets.In addition,we support that the focus of the future research is to solve the demand of existing methods for the large amount of the data and the computing power.In terms of tech-nology,the extraction of the subtle feature information with the burgeoning vision transformer(ViT)network is also an important research direction. 展开更多
关键词 deep learning fine-grained visual categorization convolutional neural network(CNN) visual attention
在线阅读 下载PDF
Using deep learning to detect small targets in infrared oversampling images 被引量:15
4
作者 LIN Liangkui WANG Shaoyou TANG Zhongxing 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第5期947-952,共6页
According to the oversampling imaging characteristics, an infrared small target detection method based on deep learning is proposed. A 7-layer deep convolutional neural network(CNN) is designed to automatically extrac... According to the oversampling imaging characteristics, an infrared small target detection method based on deep learning is proposed. A 7-layer deep convolutional neural network(CNN) is designed to automatically extract small target features and suppress clutters in an end-to-end manner. The input of CNN is an original oversampling image while the output is a cluttersuppressed feature map. The CNN contains only convolution and non-linear operations, and the resolution of the output feature map is the same as that of the input image. The L1-norm loss function is used, and a mass of training data is generated to train the network effectively. Results show that compared with several baseline methods, the proposed method improves the signal clutter ratio gain and background suppression factor by 3–4 orders of magnitude, and has more powerful target detection performance. 展开更多
关键词 infrared small target detection OVERSAMPLING deep learning convolutional neural network(CNN)
在线阅读 下载PDF
An enhanced hybrid ensemble deep learning approach for forecasting daily PM_(2.5) 被引量:7
5
作者 LIU Hui DENG Da-hua 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第6期2074-2083,共10页
PM_(2.5) forecasting technology can provide a scientific and effective way to assist environmental governance and protect public health.To forecast PM_(2.5),an enhanced hybrid ensemble deep learning model is proposed ... PM_(2.5) forecasting technology can provide a scientific and effective way to assist environmental governance and protect public health.To forecast PM_(2.5),an enhanced hybrid ensemble deep learning model is proposed in this research.The whole framework of the proposed model can be generalized as follows:the original PM_(2.5) series is decomposed into 8 sub-series with different frequency characteristics by variational mode decomposition(VMD);the long short-term memory(LSTM)network,echo state network(ESN),and temporal convolutional network(TCN)are applied for parallel forecasting for 8 different frequency PM_(2.5) sub-series;the gradient boosting decision tree(GBDT)is applied to assemble and reconstruct the forecasting results of LSTM,ESN and TCN.By comparing the forecasting data of the models over 3 PM_(2.5) series collected from Shenyang,Changsha and Shenzhen,the conclusions can be drawn that GBDT is a more effective method to integrate the forecasting result than traditional heuristic algorithms;MAE values of the proposed model on 3 PM_(2.5) series are 1.587,1.718 and 1.327μg/m3,respectively and the proposed model achieves more accurate results for all experiments than sixteen alternative forecasting models which contain three state-of-the-art models. 展开更多
关键词 PM_(2.5)forecasting variational mode decomposition deep neural network ensemble learning
在线阅读 下载PDF
Study on the prediction and inverse prediction of detonation properties based on deep learning 被引量:4
6
作者 Zi-hang Yang Ji-li Rong Zi-tong Zhao 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第6期18-30,共13页
The accurate and efficient prediction of explosive detonation properties has important engineering significance for weapon design.Traditional methods for predicting detonation performance include empirical formulas,eq... The accurate and efficient prediction of explosive detonation properties has important engineering significance for weapon design.Traditional methods for predicting detonation performance include empirical formulas,equations of state,and quantum chemical calculation methods.In recent years,with the development of computer performance and deep learning methods,researchers have begun to apply deep learning methods to the prediction of explosive detonation performance.The deep learning method has the advantage of simple and rapid prediction of explosive detonation properties.However,some problems remain in the study of detonation properties based on deep learning.For example,there are few studies on the prediction of mixed explosives,on the prediction of the parameters of the equation of state of explosives,and on the application of explosive properties to predict the formulation of explosives.Based on an artificial neural network model and a one-dimensional convolutional neural network model,three improved deep learning models were established in this work with the aim of solving these problems.The training data for these models,called the detonation parameters prediction model,JWL equation of state(EOS)prediction model,and inverse prediction model,was obtained through the KHT thermochemical code.After training,the model was tested for overfitting using the validation-set test.Through the model-accuracy test,the prediction accuracy of the model for real explosive formulations was tested by comparing the predicted value with the reference value.The results show that the model errors were within 10%and 3%for the prediction of detonation pressure and detonation velocity,respectively.The accuracy refers to the prediction of tested explosive formulations which consist of TNT,RDX and HMX.For the prediction of the equation of state for explosives,the correlation coefficient between the prediction and the reference curves was above 0.99.For the prediction of the inverse prediction model,the prediction error of the explosive equation was within 9%.This indicates that the models have utility in engineering. 展开更多
关键词 deep learning Detonation properties KHT thermochemical Code JWL equation of states Artificial neural network One-dimensional convolutional neural network
在线阅读 下载PDF
Automatic Calcified Plaques Detection in the OCT Pullbacks Using Convolutional Neural Networks 被引量:2
7
作者 Chunliu He Yifan Yin +2 位作者 Jiaqiu Wang Biao Xu Zhiyong Li 《医用生物力学》 EI CAS CSCD 北大核心 2019年第A01期109-110,共2页
Background Coronary artery calcification is a well-known marker of atherosclerotic plaque burden.High-resolution intravascular optical coherence tomography(OCT)imaging has shown the potential to characterize the detai... Background Coronary artery calcification is a well-known marker of atherosclerotic plaque burden.High-resolution intravascular optical coherence tomography(OCT)imaging has shown the potential to characterize the details of coronary calcification in vivo.In routine clinical practice,it is a time-consuming and laborious task for clinicians to review the over 250 images in a single pullback.Besides,the imbalance label distribution within the entire pullbacks is another problem,which could lead to the failure of the classifier model.Given the success of deep learning methods with other imaging modalities,a thorough understanding of calcified plaque detection using Convolutional Neural Networks(CNNs)within pullbacks for future clinical decision was required.Methods All 33 IVOCT clinical pullbacks of 33 patients were taken from Affiliated Drum Tower Hospital,Nanjing University between December 2017 and December 2018.For ground-truth annotation,three trained experts determined the type of plaque that was present in a B-Scan.The experts assigned the labels'no calcified plaque','calcified plaque'for each OCT image.All experts were provided the all images for labeling.The final label was determined based on consensus between the experts,different opinions on the plaque type were resolved by asking the experts for a repetition of their evaluation.Before the implement of algorithm,all OCT images was resized to a resolution of 300×300,which matched the range used with standard architectures in the natural image domain.In the study,we randomly selected 26 pullbacks for training,the remaining data were testing.While,imbalance label distribution within entire pullbacks was great challenge for various CNNs architecture.In order to resolve the problem,we designed the following experiment.First,we fine-tuned twenty different CNNs architecture,including customize CNN architectures and pretrained CNN architectures.Considering the nature of OCT images,customize CNN architectures were designed that the layers were fewer than 25 layers.Then,three with good performance were selected and further deep fine-tuned to train three different models.The difference of CNNs was mainly in the model architecture,such as depth-based residual networks,width-based inception networks.Finally,the three CNN models were used to majority voting,the predicted labels were from the most voting.Areas under the receiver operating characteristic curve(ROC AUC)were used as the evaluation metric for the imbalance label distribution.Results The imbalance label distribution within pullbacks affected both convergence during the training phase and generalization of a CNN model.Different labels of OCT images could be classified with excellent performance by fine tuning parameters of CNN architectures.Overall,we find that our final result performed best with an accuracy of 90%of'calcified plaque'class,which the numbers were less than'no calcified plaque'class in one pullback.Conclusions The obtained results showed that the method is fast and effective to classify calcific plaques with imbalance label distribution in each pullback.The results suggest that the proposed method could be facilitating our understanding of coronary artery calcification in the process of atherosclerosis andhelping guide complex interventional strategies in coronary arteries with superficial calcification. 展开更多
关键词 CALCIFIED PLAQUE INTRAVASCULAR optical coherence tomography deep learning IMBALANCE LABEL distribution convolutional neural networks
在线阅读 下载PDF
Uplink NOMA signal transmission with convolutional neural networks approach 被引量:3
8
作者 LIN Chuan CHANG Qing LI Xianxu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2020年第5期890-898,共9页
Non-orthogonal multiple access(NOMA), featuring high spectrum efficiency, massive connectivity and low latency, holds immense potential to be a novel multi-access technique in fifth-generation(5G) communication. Succe... Non-orthogonal multiple access(NOMA), featuring high spectrum efficiency, massive connectivity and low latency, holds immense potential to be a novel multi-access technique in fifth-generation(5G) communication. Successive interference cancellation(SIC) is proved to be an effective method to detect the NOMA signal by ordering the power of received signals and then decoding them. However, the error accumulation effect referred to as error propagation is an inevitable problem. In this paper,we propose a convolutional neural networks(CNNs) approach to restore the desired signal impaired by the multiple input multiple output(MIMO) channel. Especially in the uplink NOMA scenario,the proposed method can decode multiple users' information in a cluster instantaneously without any traditional communication signal processing steps. Simulation experiments are conducted in the Rayleigh channel and the results demonstrate that the error performance of the proposed learning system outperforms that of the classic SIC detection. Consequently, deep learning has disruptive potential to replace the conventional signal detection method. 展开更多
关键词 non-orthogonal multiple access(NOMA) deep learning(DL) convolutional neural networks(CNNs) signal detection
在线阅读 下载PDF
基于CNN-Informer和DeepLIFT的电力系统频率稳定评估方法
9
作者 张异浩 韩松 荣娜 《电力自动化设备》 北大核心 2025年第7期165-171,共7页
为解决扰动发生后电力系统频率稳定评估精度低且预测时间长的问题,提出了一种电力系统频率稳定评估方法。该方法改进层次时间戳机制,有效捕捉了频率响应在不同时间尺度下的相关性;利用深度学习重要特征技术对输入特征进行筛选,简化了数... 为解决扰动发生后电力系统频率稳定评估精度低且预测时间长的问题,提出了一种电力系统频率稳定评估方法。该方法改进层次时间戳机制,有效捕捉了频率响应在不同时间尺度下的相关性;利用深度学习重要特征技术对输入特征进行筛选,简化了数据维度并提升了模型的训练效率和预测性能;结合卷积神经网络与Informer网络,基于编码器与解码器的协同训练,构建适用于多场景的频率稳定评估框架。以修改后的新英格兰10机39节点系统和WECC 29机179节点系统为算例,仿真结果表明,所提方法在时效性和准确性方面具有显著的优势,并在多种实验条件下展现出良好的鲁棒性和适应性。 展开更多
关键词 电力系统 频率稳定评估 深度学习 时序数据 层次时间戳 蒸馏机制 卷积神经网络
在线阅读 下载PDF
A guidance method for coplanar orbital interception based on reinforcement learning 被引量:6
10
作者 ZENG Xin ZHU Yanwei +1 位作者 YANG Leping ZHANG Chengming 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2021年第4期927-938,共12页
This paper investigates the guidance method based on reinforcement learning(RL)for the coplanar orbital interception in a continuous low-thrust scenario.The problem is formulated into a Markov decision process(MDP)mod... This paper investigates the guidance method based on reinforcement learning(RL)for the coplanar orbital interception in a continuous low-thrust scenario.The problem is formulated into a Markov decision process(MDP)model,then a welldesigned RL algorithm,experience based deep deterministic policy gradient(EBDDPG),is proposed to solve it.By taking the advantage of prior information generated through the optimal control model,the proposed algorithm not only resolves the convergence problem of the common RL algorithm,but also successfully trains an efficient deep neural network(DNN)controller for the chaser spacecraft to generate the control sequence.Numerical simulation results show that the proposed algorithm is feasible and the trained DNN controller significantly improves the efficiency over traditional optimization methods by roughly two orders of magnitude. 展开更多
关键词 orbital interception reinforcement learning(RL) Markov decision process(MDP) deep neural network(DNN)
在线阅读 下载PDF
Robust multi-layer extreme learning machine using bias-variance tradeoff 被引量:1
11
作者 YU Tian-jun YAN Xue-feng 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第12期3744-3753,共10页
As a new neural network model,extreme learning machine(ELM)has a good learning rate and generalization ability.However,ELM with a single hidden layer structure often fails to achieve good results when faced with large... As a new neural network model,extreme learning machine(ELM)has a good learning rate and generalization ability.However,ELM with a single hidden layer structure often fails to achieve good results when faced with large-scale multi-featured problems.To resolve this problem,we propose a multi-layer framework for the ELM learning algorithm to improve the model’s generalization ability.Moreover,noises or abnormal points often exist in practical applications,and they result in the inability to obtain clean training data.The generalization ability of the original ELM decreases under such circumstances.To address this issue,we add model bias and variance to the loss function so that the model gains the ability to minimize model bias and model variance,thus reducing the influence of noise signals.A new robust multi-layer algorithm called ML-RELM is proposed to enhance outlier robustness in complex datasets.Simulation results show that the method has high generalization ability and strong robustness to noise. 展开更多
关键词 extreme learning machine deep neural network ROBUSTNESS unsupervised feature learning
在线阅读 下载PDF
DeephitTM:医学生存分析的时间相关性深度学习模型 被引量:1
12
作者 张大鹏 程学亮 孙明霞 《南京师大学报(自然科学版)》 CAS 北大核心 2024年第3期138-148,共11页
生存分析是医学中经常用到的一种健康预测方法,越来越多的学者开始采用深度学习的方法对生存分析问题进行建模以得到更好的预测结果.目前已有的方法都假设风险和时间的联合概率是无关联的.然而生存分析数据的实际结果中却包含时间因素,... 生存分析是医学中经常用到的一种健康预测方法,越来越多的学者开始采用深度学习的方法对生存分析问题进行建模以得到更好的预测结果.目前已有的方法都假设风险和时间的联合概率是无关联的.然而生存分析数据的实际结果中却包含时间因素,这就无法保证不同时刻得到的风险概率是无关联的.本文提出一种带有时间相关性的深度学习模型DeephitTM,该模型对已有的深度学习模型Deephit进行了改进.实验结果表明,在不同的数据集上,改进后的模型的性能相比于原模型能够提升1到3个百分点. 展开更多
关键词 生存分析 深度学习 时间相关性 神经网络 deephit模型
在线阅读 下载PDF
A novel multi-resolution network for the open-circuit faults diagnosis of automatic ramming drive system 被引量:1
13
作者 Liuxuan Wei Linfang Qian +3 位作者 Manyi Wang Minghao Tong Yilin Jiang Ming Li 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第4期225-237,共13页
The open-circuit fault is one of the most common faults of the automatic ramming drive system(ARDS),and it can be categorized into the open-phase faults of Permanent Magnet Synchronous Motor(PMSM)and the open-circuit ... The open-circuit fault is one of the most common faults of the automatic ramming drive system(ARDS),and it can be categorized into the open-phase faults of Permanent Magnet Synchronous Motor(PMSM)and the open-circuit faults of Voltage Source Inverter(VSI). The stator current serves as a common indicator for detecting open-circuit faults. Due to the identical changes of the stator current between the open-phase faults in the PMSM and failures of double switches within the same leg of the VSI, this paper utilizes the zero-sequence voltage component as an additional diagnostic criterion to differentiate them.Considering the variable conditions and substantial noise of the ARDS, a novel Multi-resolution Network(Mr Net) is proposed, which can extract multi-resolution perceptual information and enhance robustness to the noise. Meanwhile, a feature weighted layer is introduced to allocate higher weights to characteristics situated near the feature frequency. Both simulation and experiment results validate that the proposed fault diagnosis method can diagnose 25 types of open-circuit faults and achieve more than98.28% diagnostic accuracy. In addition, the experiment results also demonstrate that Mr Net has the capability of diagnosing the fault types accurately under the interference of noise signals(Laplace noise and Gaussian noise). 展开更多
关键词 Fault diagnosis deep learning Multi-scale convolution Open-circuit Convolutional neural network
在线阅读 下载PDF
Research on Automatic Diagnostic Technology of Soybean Leaf Diseases Based on Improved Transfer Learning
14
作者 Yu Xiao Jing Yong-dong Zheng Lu-lu 《Journal of Northeast Agricultural University(English Edition)》 CAS 2022年第2期62-72,共11页
Soybean diseases and insect pests are important factors that affect the output and quality of the soybean,thus,it is necessary to do correct inspection and diagnosis on them.For this reason,based on improved transfer ... Soybean diseases and insect pests are important factors that affect the output and quality of the soybean,thus,it is necessary to do correct inspection and diagnosis on them.For this reason,based on improved transfer learning,a classification method of the soybean leaf diseases was proposed in this paper.In detail,this method first removed the complicated background in images and cut apart leaves from the entire image;second,the data-augmented method was applied to amplify the separated leaf disease image dataset to reduce overfitting;at last,the automatically fine-tuning convolutional neural network(AutoTun)was adopted to classify the soybean leaf diseases.The proposed method respectively reached 94.23%,93.51%and 94.91%of validation accuracy rates on VGG-16,ResNet-34 and DenseNet-121,and it was compared with the traditional fine-tuning method of transfer learning.The results indicated that the proposed method had superior to the traditional transfer learning method. 展开更多
关键词 transfer learning deep convolutional neural network classification recognition soybean disease
在线阅读 下载PDF
车联网边缘计算环境下基于流量预测的高效任务卸载策略研究 被引量:1
15
作者 许小龙 杨威 +4 位作者 杨辰翊 程勇 齐连永 项昊龙 窦万春 《电子学报》 北大核心 2025年第2期329-343,共15页
车联网(Internet of Vehicles,IoV)边缘计算通过将移动边缘计算和车联网相结合,实现了车辆计算任务从云服务器向边缘服务器的下沉,从而有效降低了车联网服务的响应时延.然而,车联网中不规则的交通流时空分布会导致边缘服务器计算负载不... 车联网(Internet of Vehicles,IoV)边缘计算通过将移动边缘计算和车联网相结合,实现了车辆计算任务从云服务器向边缘服务器的下沉,从而有效降低了车联网服务的响应时延.然而,车联网中不规则的交通流时空分布会导致边缘服务器计算负载不均衡,进而影响车联网服务的实时响应.为此,本文提出了一种车联网边缘计算环境下基于流量预测的高效任务卸载策略.具体而言,首先设计了能充分挖掘路段间连通性和距离信息的切比雪夫图加权网络(Chebyshev graph Weighted Network,ChebWN)进行交通流量预测.然后,设计了一种基于深度强化学习的二元任务卸载方法(DRL-based Binary task Offloading Algorithm,DBOA),该算法将二元任务卸载的决策过程分为两个阶段,即首先通过深度强化学习得到卸载策略,再通过一维双端查找算法确定最大化总计算速率的时间片分配方案,降低了决策过程的复杂度.最后,通过大量的对比实验验证了ChebWN在预测交通流量方面的准确性,以及DBOA在提升车联网服务响应速度方面的优越性. 展开更多
关键词 移动边缘计算 深度强化学习 车联网 图神经网络(GNN) 任务卸载
在线阅读 下载PDF
基于双路多尺度卷积的近红外光谱羊绒羊毛纤维预测模型 被引量:1
16
作者 陈锦妮 田谷丰 +4 位作者 李云红 朱耀麟 陈鑫 门玉乐 魏小双 《光谱学与光谱分析》 北大核心 2025年第3期678-684,共7页
羊绒具有轻盈舒适、光滑柔软、稀释透气以及保暖好的特点,由于羊绒价格十分昂贵,因此市场上的羊绒产品质量良莠不齐。现有的显微镜法、DNA法、化学溶解法和基于图像的方法具有损坏样本、设备昂贵、主观性强等不足。近红外光谱技术是一... 羊绒具有轻盈舒适、光滑柔软、稀释透气以及保暖好的特点,由于羊绒价格十分昂贵,因此市场上的羊绒产品质量良莠不齐。现有的显微镜法、DNA法、化学溶解法和基于图像的方法具有损坏样本、设备昂贵、主观性强等不足。近红外光谱技术是一种非破坏性、可进行建模操作的快速测量方法。针对传统的建模方法通常无法学习出通用的近红外光谱波段特征,导致泛化能力弱,且羊绒羊毛纤维的近红外光谱波段特征相似,难以区分的问题,本文提出一种基于双路多尺度卷积的近红外光谱羊绒羊毛纤维预测模型。采集了羊绒羊毛样品的近红外光谱波段数据共1170个进行验证,近红外光谱波段数据范围是1300~2500 nm。利用两个并行卷积神经网络来提取近红外光谱波段的特征,采用原始近红外光谱波段数据和降维近红外光谱波段数据同时输入的方式,并利用多尺度特征提取模块进一步提取中间具有贡献力的近红外光谱波段特征,利用路径交流模块用于两路近红外光谱波段特征的信息交流,最后利用类级别融合得到羊绒羊毛纤维预测结果。在实验过程中,将采集的80%近红外光谱波段数据用于模型训练,20%近红外光谱波段数据用于模型测试。模型测试集的平均预测准确率为94.45%,与传统算法中的随机森林、SVM、1D-CNN等算法相比较分别提升了7.33%、5.22%、2.96%,并进行消融实验对所提模型的结构进一步验证。实验结果表明,本文提出的双路多尺度卷积的近红外光谱羊绒羊毛纤维预测模型可实现羊绒羊毛纤维的快速无损预测,为近红外光谱羊绒羊毛纤维预测提供了新的思路。 展开更多
关键词 羊绒羊毛 近红外光谱 深度学习 双路多尺度卷积神经网络
在线阅读 下载PDF
基于Bi-LSTM和改进残差学习的风电功率超短期预测方法 被引量:2
17
作者 王进峰 吴盛威 +1 位作者 花广如 吴自高 《华北电力大学学报(自然科学版)》 北大核心 2025年第1期56-65,共10页
现有的方法在以风电功率时间序列拟合功率曲线时,难以表达风电功率数据所包含的趋势性和周期性等时间信息而出现性能退化问题,从而导致预测精度下降。为了解决性能退化问题从而提高风电功率时间序列预测的精度,提出了基于双向长短时记忆... 现有的方法在以风电功率时间序列拟合功率曲线时,难以表达风电功率数据所包含的趋势性和周期性等时间信息而出现性能退化问题,从而导致预测精度下降。为了解决性能退化问题从而提高风电功率时间序列预测的精度,提出了基于双向长短时记忆(Bi-LSTM)和改进残差学习的风电功率预测方法。方法由两个部分组成,第一部分是以Bi-LSTM为主的多残差块上,结合稠密残差块网络(DenseNet)与多级残差网络(MRN)的残差连接方式,并且在残差连接上使用一维卷积神经网络(1D CNN)来提取风电功率值中时序的非线性特征部分。第二部分是Bi-LSTM与全连接层(Dense)组成的解码器,将多残差块提取到的功率值时序非线性特征映射为预测结果。方法在实际运行的风电功率数据上进行实验,并与常见的残差网络方法和时间序列预测方法进行对比。方法相比于其他模型方法有着更高的预测精度以及更好的泛化能力。 展开更多
关键词 深度学习 残差网络 风电功率预测 双向长短时记忆 一维卷积神经网络
在线阅读 下载PDF
基于改进一维卷积神经网络模型的蛋清粉近红外光谱真实性检测 被引量:1
18
作者 祝志慧 李沃霖 +4 位作者 韩雨彤 金永涛 叶文杰 王巧华 马美湖 《食品科学》 北大核心 2025年第6期245-253,共9页
引入近红外光谱检测技术,构建改进一维卷积神经网络(one-dimensional convolutional neural network,1D-CNN)蛋清粉真实性检测模型。该模型基于1D-CNN模型,无需对光谱数据进行预处理;同时在网络中加入有效通道注意力模块和一维全局平均... 引入近红外光谱检测技术,构建改进一维卷积神经网络(one-dimensional convolutional neural network,1D-CNN)蛋清粉真实性检测模型。该模型基于1D-CNN模型,无需对光谱数据进行预处理;同时在网络中加入有效通道注意力模块和一维全局平均池化层,提高模型提取光谱特征的能力,减少噪声干扰。结果表明,改进后的EG-1D-CNN模型可判别蛋清粉样本的真伪,对于掺假蛋清粉的检测率可达到97.80%,总准确率(AAR)为98.93%,最低检测限(LLRC)在淀粉、大豆分离蛋白、三聚氰胺、尿素和甘氨酸5种单掺杂物质上分别可达到1%、5%、0.1%、1%、5%,在多掺杂中可达到0.1%~1%,平均检测时间(AATS)可达到0.004 4 s。与传统1D-CNN网络结构及其他改进算法相比,改进后的EG-1D-CNN模型在蛋清粉真实性检测上具有更高精度,检测速度快,且模型占用空间小,更适合部署在嵌入式设备中。该研究可为后续开发针对蛋粉质量检测的便携式近红外光谱检测仪提供一定的理论基础。 展开更多
关键词 蛋清粉 近红外光谱 真实性检测 一维卷积神经网络 深度学习
在线阅读 下载PDF
基于卷积神经网络和多标签分类的复杂结构损伤诊断 被引量:1
19
作者 李书进 杨繁繁 张远进 《建筑科学与工程学报》 北大核心 2025年第1期101-111,共11页
为研究复杂空间框架节点损伤识别问题,利用多标签分类的优势,构建了多标签单输出和多标签多输出两种卷积神经网络模型,用于框架结构节点损伤位置的判断和损伤程度诊断。针对复杂结构损伤位置判断时工况多、识别准确率不高等问题,提出了... 为研究复杂空间框架节点损伤识别问题,利用多标签分类的优势,构建了多标签单输出和多标签多输出两种卷积神经网络模型,用于框架结构节点损伤位置的判断和损伤程度诊断。针对复杂结构损伤位置判断时工况多、识别准确率不高等问题,提出了一种能对结构进行分层(或分区)处理并同时完成损伤诊断的多标签多输出卷积神经网络模型。分别构建了适用于多标签分类的浅层、深层和深层残差多输出卷积神经网络模型,并对其泛化性能进行了研究。结果表明:提出的模型具有较高的损伤诊断准确率和一定的抗噪能力,特别是经过分层(分区)处理后的多标签多输出网络模型更具高效性,有更快的收敛速度和更高的诊断准确率;利用多标签多输出残差卷积神经网络模型可以从训练工况中提取到足够多的损伤信息,在面对未经过学习的工况时也能较准确判断各节点的损伤等级。 展开更多
关键词 损伤诊断 卷积神经网络 多标签分类 框架结构 深度学习
在线阅读 下载PDF
基于CNN模型的地震数据噪声压制性能对比研究 被引量:1
20
作者 张光德 张怀榜 +3 位作者 赵金泉 尤加春 魏俊廷 杨德宽 《石油物探》 北大核心 2025年第2期232-246,共15页
地震噪声的压制是地震勘探中地震数据处理的重要研究内容之一。准确地压制地震噪声和提取地震信号中的有效信息是地震勘探和地震监测的一项关键步骤。传统的地震噪声压制方法存在一些不足之处,如灵活性不足、难以处理复杂噪声、有效信... 地震噪声的压制是地震勘探中地震数据处理的重要研究内容之一。准确地压制地震噪声和提取地震信号中的有效信息是地震勘探和地震监测的一项关键步骤。传统的地震噪声压制方法存在一些不足之处,如灵活性不足、难以处理复杂噪声、有效信息损失以及依赖人工提取特征等局限性。为克服传统方法的不足,采用时频域变换并结合深度学习方法进行地震噪声压制,并验证其应用效果。通过构建5个神经网络模型(FCN、Unet、CBDNet、SwinUnet以及TransUnet)对经过时频变换的地震信号进行噪声压制。为了定量评估实验方法的去噪性能,引入了峰值信噪比(PSNR)、结构相似性指数(SSIM)和均方根误差(RMSE)3个指标,比较不同方法的噪声压制性能。数值实验结果表明,基于时频变换的卷积神经网络(CNN)方法对常见的地震噪声类型(包括随机噪声、海洋涌浪噪声、陆地面波噪声)具有较好的噪声压制效果,能够提高地震数据的信噪比。而Transformer模块的引入可进一步提高对上述3种常见地震数据噪声类型的压制效果,进一步提升CNN模型的去噪性能。尽管该方法在数值实验中取得了较好的应用效果,但仍有进一步优化的空间可供探索,比如改进网络结构以适应更复杂的地震信号,并探索与其他先进技术结合,以提升地震噪声压制性能。 展开更多
关键词 地震噪声压制 深度学习 卷积神经网络(CNN) 时频变换 TRANSFORMER
在线阅读 下载PDF
上一页 1 2 200 下一页 到第
使用帮助 返回顶部