This paper shows that first integrals of discrete equation of motion for Birkhoff systems can be determined explicitly by investigating the invariance properties of the discrete Pfaffian. The result obtained is a disc...This paper shows that first integrals of discrete equation of motion for Birkhoff systems can be determined explicitly by investigating the invariance properties of the discrete Pfaffian. The result obtained is a discrete analogue of theorem of Noether in the calculus of variations. An example is given to illustrate the application of the results.展开更多
In this paper, we investigate the nonlinear fractional difference equation with nonlocal fractional boundary conditions. We derive the Green's function for this problem and show that it satisfies certain propertie...In this paper, we investigate the nonlinear fractional difference equation with nonlocal fractional boundary conditions. We derive the Green's function for this problem and show that it satisfies certain properties. Some existence results are obtained by means of nonlinear alternative of Leray-Schauder type theorem and Krasnosel-skii's fixed point theorem.展开更多
Based on Krasnoselskii's fixed point theorem,matrix measure and functional analysis methods,some new sufficient conditions for the existence of periodic solutions of neutral functional differential equations with ...Based on Krasnoselskii's fixed point theorem,matrix measure and functional analysis methods,some new sufficient conditions for the existence of periodic solutions of neutral functional differential equations with distributed and discrete delays are obtained. Moreover,we construct an example to illustrate the feasibility of our results.展开更多
In this paper, we present a new integration algorithm based on the discrete Pfaff-Birkhoff principle for Birkhoffian systems. It is proved that the new algorithm can preserve the general symplectic geometric structure...In this paper, we present a new integration algorithm based on the discrete Pfaff-Birkhoff principle for Birkhoffian systems. It is proved that the new algorithm can preserve the general symplectic geometric structures of Birkhoffian systems. A numerical experiment for a damping oscillator system is conducted. The result shows that the new algorithm can better simulate the energy dissipation than the R-K method, which illustrates that we can numerically solve the dynamical equations by the discrete variational method in a Birkhoffian framework for the systems with a general symplectic structure. Furthermore, it is demonstrated that the results of the numerical experiments are determined not by the constructing methods of Birkhoffian functions but by whether the numerical method can preserve the inherent nature of the dynamical system.展开更多
Fractional sine series(FRSS)and fractional cosine series(FRCS)are the discrete form of the fractional cosine transform(FRCT)and fractional sine transform(FRST).The recent stud-ies have shown that discrete convolution ...Fractional sine series(FRSS)and fractional cosine series(FRCS)are the discrete form of the fractional cosine transform(FRCT)and fractional sine transform(FRST).The recent stud-ies have shown that discrete convolution is widely used in optics,signal processing and applied mathematics.In this paper,firstly,the definitions of fractional sine series(FRSS)and fractional co-sine series(FRCS)are presented.Secondly,the discrete convolution operations and convolution theorems for fractional sine and cosine series are given.The relationship of two convolution opera-tions is presented.Lastly,the discrete Young’s type inequality is established.The proposed theory plays an important role in digital filtering and the solution of differential and integral equations.展开更多
The discrete logarithm problem(DLP)is to find a solution n such that g^n=h in a finite cyclic group G=,where h∈G.The DLP is the security foundation of many cryptosystems,such as RSA.We propose a method to improve Pol...The discrete logarithm problem(DLP)is to find a solution n such that g^n=h in a finite cyclic group G=,where h∈G.The DLP is the security foundation of many cryptosystems,such as RSA.We propose a method to improve Pollard’s kangaroo algorithm,which is the classic algorithm for solving the DLP.In the proposed algorithm,the large integer multiplications are reduced by controlling whether to perform large integer multiplication.To control the process,the tools of expanding factor and jumping distance are introduced.The expanding factor is an indicator used to measure the probability of collision.Large integer multiplication is performed if the value of the expanding factor is greater than the given bound.The improved algorithm requires an average of(1.633+o(1))q(1/2)times of the large integer multiplications.In experiments,the average large integer multiplication times is approximately(1.5+o(1))q(1/2).展开更多
基金Project partially supported by the National Natural Science Foundation of China (Grant No 10172056) and the Science Research of the Education Bureau of Anhui Province, China (Grant No 2006KJ263B). Acknowledgement We wish to thank the referees for their careful reading of the manuscript and their useful remarks which helped us to improve the quality of this paper.
文摘This paper shows that first integrals of discrete equation of motion for Birkhoff systems can be determined explicitly by investigating the invariance properties of the discrete Pfaffian. The result obtained is a discrete analogue of theorem of Noether in the calculus of variations. An example is given to illustrate the application of the results.
基金Supported by the National Natural Science Foundation of China(11161049)
文摘In this paper, we investigate the nonlinear fractional difference equation with nonlocal fractional boundary conditions. We derive the Green's function for this problem and show that it satisfies certain properties. Some existence results are obtained by means of nonlinear alternative of Leray-Schauder type theorem and Krasnosel-skii's fixed point theorem.
基金Supported by the National Natural Science Foundation of China(11071001)Supported by the NSF of Education Bureau of Anhui Province(KJ2009A005Z,KJ2010ZD02,2010SQRL159)+1 种基金Supported by the 211 Project of Anhui University(KJTD002B)Supported by the Natural Science Foundation of Anhui Province(1208085MA13)
文摘Based on Krasnoselskii's fixed point theorem,matrix measure and functional analysis methods,some new sufficient conditions for the existence of periodic solutions of neutral functional differential equations with distributed and discrete delays are obtained. Moreover,we construct an example to illustrate the feasibility of our results.
基金supported by the National Natural Science Foundation of China(Grant Nos.11301350,11172120,and 11202090)the Liaoning University Prereporting Fund Natural Projects(Grant No.2013LDGY02)
文摘In this paper, we present a new integration algorithm based on the discrete Pfaff-Birkhoff principle for Birkhoffian systems. It is proved that the new algorithm can preserve the general symplectic geometric structures of Birkhoffian systems. A numerical experiment for a damping oscillator system is conducted. The result shows that the new algorithm can better simulate the energy dissipation than the R-K method, which illustrates that we can numerically solve the dynamical equations by the discrete variational method in a Birkhoffian framework for the systems with a general symplectic structure. Furthermore, it is demonstrated that the results of the numerical experiments are determined not by the constructing methods of Birkhoffian functions but by whether the numerical method can preserve the inherent nature of the dynamical system.
基金supported by the National Natural Science Foundation of China(Nos.61861044,62001193,11961072 and 62041212)The Natural Science Foundation of Shaanxi Province(Nos.2020JM-547 and 2020JM-548)the Sci-ence Foundation of Yan’an University(Nos.YDY2017-05 and YDBK2018-36).
文摘Fractional sine series(FRSS)and fractional cosine series(FRCS)are the discrete form of the fractional cosine transform(FRCT)and fractional sine transform(FRST).The recent stud-ies have shown that discrete convolution is widely used in optics,signal processing and applied mathematics.In this paper,firstly,the definitions of fractional sine series(FRSS)and fractional co-sine series(FRCS)are presented.Secondly,the discrete convolution operations and convolution theorems for fractional sine and cosine series are given.The relationship of two convolution opera-tions is presented.Lastly,the discrete Young’s type inequality is established.The proposed theory plays an important role in digital filtering and the solution of differential and integral equations.
基金partially supported by National Key R&D Program of China(no.2017YFB0802500)The 13th Five-Year National Cryptographic Development Foundation(no.MMJJ20180208)+1 种基金Beijing Science and Technology Commission(no.2181100002718001)NSF(no.61272039).
文摘The discrete logarithm problem(DLP)is to find a solution n such that g^n=h in a finite cyclic group G=,where h∈G.The DLP is the security foundation of many cryptosystems,such as RSA.We propose a method to improve Pollard’s kangaroo algorithm,which is the classic algorithm for solving the DLP.In the proposed algorithm,the large integer multiplications are reduced by controlling whether to perform large integer multiplication.To control the process,the tools of expanding factor and jumping distance are introduced.The expanding factor is an indicator used to measure the probability of collision.Large integer multiplication is performed if the value of the expanding factor is greater than the given bound.The improved algorithm requires an average of(1.633+o(1))q(1/2)times of the large integer multiplications.In experiments,the average large integer multiplication times is approximately(1.5+o(1))q(1/2).