期刊文献+

基于Delta算子离散化方法的连续T-S模型混沌化 被引量:1

Chaotifying Continuous-Time T-S Model via Delta Operator Discretization
在线阅读 下载PDF
导出
摘要 针对一类连续时间T-S模糊模型的混沌化问题,提出一种新的混沌化方法.首先采用Delta算子离散化的方法将连续时间T-S模糊模型全局离散化,然后,在此离散时间T-S模糊模型的基础上,设计了一个线性状态反馈控制器,最后对整个闭环系统作一次溢出非线性函数运算以保证系统状态的有界性.可以证明,当控制器增益取得合适的情况下,系统可以产生Devaney意义下的混沌.数值仿真结果验证了所提方法的有效性. A new approach was proposed to chaotify a class of continuous-time T-S fuzzy models. The delta operator is employed to discretize the continuous-time T-S fuzzy models globally so as to design a linear state feedback controller. Then, an operation of overflow nonlinear function is done for the whole closed-loop system to ensure the boundedness of the controlled system. It is proved that the system is thus chaotic in the sense of Devaney if the parameters of controller are chosen appropriately. The simulation results demonstrate the effectiveness of the proposed approach.
作者 赵琰 张化光
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2008年第5期609-612,共4页 Journal of Northeastern University(Natural Science)
基金 国家自然科学基金资助项目(60325311 60534010 60572070 60521003) 长江学者奖励计划和创新研究群体资助项目(IRT0421)
关键词 连续T-S模型 Delta算子离散化 混沌化 混沌反控制 DEVANEY混沌 continuous-time T-S model Delta operator discretization chaotification anticontrol of chaos Devaney's chaos
作者简介 赵琰(1980-),男,辽宁抚顺人,东北大学博士研究生;Correspondent:ZHAO Yan,E—mail:zhaoyan_80@163.com. 张化光(1959-),男,吉林省吉林市人,东北大学教授,博士生导师.
  • 相关文献

参考文献10

  • 1Ott E, Grebogi C, Yorke J A. Controlling chaos[J ]. Physics Review Letter A, 1990,64(3) : 1196 - 1199.
  • 2谢英慧,张化光.一种四维混沌系统的逆最优控制[J].东北大学学报(自然科学版),2006,27(3):248-251. 被引量:3
  • 3Lai D J, Chen G R. Chaotification of discrete-time dynamical systems: an extension of the Chen-Lai algorithm [ J ]. International Journal of Bifurcation and Chaos, 2005, 15 (1) :109 - 117.
  • 4Lu J G. Generating chaos via decentralized linear state feedback and a class of nonlinear functions [ J ]. Chaos, Soliton & Fractal, 2005,25(2) ;403-413.
  • 5Boyarsky A, Gora P. Strong chaotification of discrete time systems by small feedback control[J]. International Journal of Bifurcation and Chaos, 2006,16(3) :715 - 719.
  • 6Li Z, Chen G R, Halang W A. Anticontrol of chaos for Takagi-Sugeno fuzzy systems[C]//Studies in Fuzziness and Soft Computing. Heidelberg: Springer-Verlag, 2006:185- 227.
  • 7Li Z, Park J B, Jco Y H, et al. Anticontrol of chaos for discrete TS fuzzy systems[J ]. IEEE Transaction on Circuits System-Ⅰ: Fundamental Theory and Application, 2002, 49(2) :249 - 253.
  • 8Li Z, Park J B, Chen G R, et al. Generating chaos via feedback control from a stable TS fuzzy system through a sinusoidal nonlinearity [ J ]. International Journal of Bifurcation and Chaos, 2002,12(10) :2283 - 2291.
  • 9Goodwin G C, Middleton R H. Rapprochement between continuous and discrete model reference adaptive control [J]. Automatica, 1986,22(2) : 199 - 207.
  • 10卢俊国.Another anticontrol method of chaos in the sense of Devaney from a Takagi-Sugeno fuzzy system via the overflow nonlinearity[J].Chinese Physics B,2005,14(6):1082-1087. 被引量:2

二级参考文献64

  • 1Liao T L,Tsai S H.Adaptive synchronization of chaotic systems and its application to secure communication[J].Chaos Solitons & Fractals,2000,11(9):1387-1396.
  • 2Lu J A,Tao C H,Lü J H,et al.Parameter identification and tracking of an unified system[J].Chin Phys Let,2002,19(5):632.
  • 3Freeman R A,Kokotovic P V.Inverse optimality in robust stabilization[J].SIAM Journal on Control and Optimization,1996,34:1365-1391.
  • 4Krstic M,Li Z H.Inverse optimal design of input-to-state stabilizing nonlinear controllers[J].IEEE Trans Automatic Control,1998,43(3):336-350.
  • 5Sanchez E N,Perez J P,Martinez M,et al.Chaos stabilization:an inverse optimal control approach[J].Latin Amer App Res:Int J,2002,32:111-114.
  • 6Lorenz E N.Deterministic non-periodic flows[J].Atoms Sci,1963,20:130-141.
  • 7Chen G R,Ueta T.Yet another chaotic attractor[J].Int J Bifurc Chaos,1999,9:1465-1466.
  • 8Lü J H,Chen G R.A new chaotic attractor coined[J].Int J Bifurc Chaos,2002,12:659-661.
  • 9Lü J H,Chen G R,Zhang S C.Dynamical analysis of a new chaotic attractor[J].Int J Bifure Chaos,2002,12:1001-1015.
  • 10Qi G Y,Du S Z,Chen G R,et al.On a four-dimensional chaotic system[J].Chaos Solitons & Fractals,2005,23:1671-1682.

共引文献3

同被引文献21

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部