期刊文献+
共找到101篇文章
< 1 2 6 >
每页显示 20 50 100
基于改进MobileNetV2的轻量化茶叶病害检测方法
1
作者 肖双喜 姚彤彤 李灿 《华南农业大学学报》 北大核心 2025年第6期801-809,共9页
【目的】解决茶叶病虫害检测中现有深度学习模型难以兼顾精度与效率,尤其不适合在资源受限的嵌入式设备上部署的问题。【方法】以MobileNetV2为基础架构引入2个关键改进,设计出轻量化且高精度的识别模型MobileNetV2-GCA-LS:一是设计了... 【目的】解决茶叶病虫害检测中现有深度学习模型难以兼顾精度与效率,尤其不适合在资源受限的嵌入式设备上部署的问题。【方法】以MobileNetV2为基础架构引入2个关键改进,设计出轻量化且高精度的识别模型MobileNetV2-GCA-LS:一是设计了一种新颖的幽灵坐标注意力(Ghost coordinate attention,GCA)模块,该模块融合坐标注意力的位置敏感性与GhostNet的高效计算特性,增强对关键病害区域的特征表达;二是采用标签平滑(Label smoothing,LS)正则化策略优化训练过程,提升模型泛化能力。模型在公开的茶树病害数据集上进行了训练与验证。【结果】MobileNetV2-GCA-LS模型在测试集上识别准确率达到了94.54%,F1为94.29%,性能显著优于MobileNetV2、MobileNetV3-Small、EfficientNet-B0、ResNet50和GhostNet。同时,该模型保持了较低的复杂度,参数量为2.6089×10^(6),浮点运算次数(Floating point operations,FLOPs)为0.3347×10^(10),验证了其在资源受限设备上部署的可行性。【结论】本研究提出的改进策略能够有效地提升模型识别茶叶病害的性能,在精度与效率间取得了良好的平衡,为智慧农业领域的病害智能监测与精准防控提供了实用的技术方案。 展开更多
关键词 茶叶 病害识别 mobilenetv2 幽灵坐标注意力(GCA) 标签平滑 智慧农业
在线阅读 下载PDF
基于MobileNetV2的轻量级输电线路绝缘子图像分割方法
2
作者 孙世明 唐元合 +2 位作者 邰曈 魏学云 方巍 《河南理工大学学报(自然科学版)》 北大核心 2025年第5期35-42,共8页
目的针对输电线路巡检航拍图像绝缘子分割精度不高、边缘端设备算力有限以及模型参数量大、实时性不足等问题,提出一种基于MobileNetV2的轻量级输电线路绝缘子分割网络ISNet。方法首先,采用轻量级的MobileNetV2作为编码器骨干网络,从输... 目的针对输电线路巡检航拍图像绝缘子分割精度不高、边缘端设备算力有限以及模型参数量大、实时性不足等问题,提出一种基于MobileNetV2的轻量级输电线路绝缘子分割网络ISNet。方法首先,采用轻量级的MobileNetV2作为编码器骨干网络,从输入图像重提取多尺度特征;其次,提出一种新的多样化特征聚合模块(DFAM),通过具有不同卷积核的卷积层、通道注意力和空间注意力机制,聚合多样化的空间位置信息和高级语义信息;最后,设计多级对称解码器(MSD)融合来自同一层编码器和上一步解码器的输出特征,以此生成最终预测图。结果实验结果表明,本文方法在航拍图像绝缘子分割数据集上表现优异,在mIoU指标上,IS-Net达到了90.9%,相比DeepLabV3plus和SegFormer,分别提高了5.2%和1.2%;在mPA指标上,ISNet达到了93.6%,相比DeepLabV3plus和SegFormer,分别提高了5.2%和0.8%。此外,本文方法在单张NVIDIA RTX 3090 GPU上的推理速度可达71.2 F/s,参数量仅为3.1 M,浮点运算量(FLOPs)仅为21.2 G(输入图像大小为1024×1024),优于目前主流的语义分割方法。结论IS-Net在提升模型的轻量化和实时性的同时,可实现最佳的分割精度。 展开更多
关键词 mobilenetv2 语义分割 绝缘子 输电线路巡检 深度学习 计算机视觉
在线阅读 下载PDF
基于改进MobileNetV2的铣削振动状态辨识 被引量:3
3
作者 郑华林 涂磊 +2 位作者 胡腾 王小虎 米良 《计算机集成制造系统》 EI CSCD 北大核心 2024年第3期982-991,共10页
针对现有铣削振动状态辨识模型准确率不高,训练耗时较长的问题,提出基于改进MobileNetV2的铣削振动状态辨识方法。以MobileNetV2骨干结构为主干特征提取网络,联合多尺度注意力聚融层(MAFL)与层递式分类器(LC)对MobileNetV2顶层结构进行... 针对现有铣削振动状态辨识模型准确率不高,训练耗时较长的问题,提出基于改进MobileNetV2的铣削振动状态辨识方法。以MobileNetV2骨干结构为主干特征提取网络,联合多尺度注意力聚融层(MAFL)与层递式分类器(LC)对MobileNetV2顶层结构进行重建,从而达到模型改进目的;其次,以变分模态分解与希尔伯特变换为基础开展铣削振动状态数据预处理,并以迁移学习(TL)与Fine-tune相结合对改进模型进行训练;进而,以不同转速下变切深侧铣工艺为对象,利用改进MobileNetV2模型及多种经典分类模型对铣削振动状态进行辨识与对比分析。结果表明,改进MobileNetV2在准确率和耗时方面均具有优势,所提辨识方法更适应制造工程领域对切削状态实时认知与颤振预警的应用需求,具有较广阔的工程应用前景。 展开更多
关键词 铣削振动 改进 mobilenetv2 状态辨识
在线阅读 下载PDF
基于MobileNetV2的岩石薄片岩性识别 被引量:6
4
作者 王婷婷 黄志贤 +2 位作者 王洪涛 杨明昊 赵万春 《吉林大学学报(地球科学版)》 CAS CSCD 北大核心 2024年第4期1432-1442,共11页
岩石薄片的岩性识别是地质分析中不可或缺的一环,其精准度直接影响后续地层岩石种类、性质和矿物成分等信息的确定,对于地质勘探和矿产开采具有重要意义。为了快速准确地识别岩性,本文提出了一种改进的MobileNetV2轻量化模型,通过选取5... 岩石薄片的岩性识别是地质分析中不可或缺的一环,其精准度直接影响后续地层岩石种类、性质和矿物成分等信息的确定,对于地质勘探和矿产开采具有重要意义。为了快速准确地识别岩性,本文提出了一种改进的MobileNetV2轻量化模型,通过选取5种岩石类型共3 700张岩石薄片图像进行岩性识别。在MobileNetV2的倒残差结构中嵌入坐标注意力机制,融合图像中多种矿物的全局特征信息。此外,改进MobileNetV2中的分类器,降低模型的参数量和计算复杂度,从而提高模型的运算速度和效率,并采用带泄露线性整流函数(leaky rectified linear unit, Leaky ReLU)作为激活函数,避免网络训练中的梯度消失问题。实验结果表明,本文提出的改进后的MobileNetV2模型大小仅为2.30 MB,在测试集上的精确率、召回率、F_(1)值分别为91.24%、90.18%、90.70%,具有较高的准确性,相比于SqueezeNet、ShuffleNetV2等同类型的轻量化网络,分类效果最好。 展开更多
关键词 岩石薄片图像 轻量化神经网络 mobilenetv2 坐标注意力机制 岩性识别
在线阅读 下载PDF
基于CA-MobileNetV2的心肌梗死定位算法研究 被引量:1
5
作者 张鹏飞 叶哲江 《传感技术学报》 CAS CSCD 北大核心 2024年第7期1179-1185,共7页
为实现临床医疗设备快速辅助诊断心肌梗死(MI)发生的部位。在轻量化卷积神经网络MobileNetV2的基础上结合协调注意力(CA)机制设计出了一种高准确率的MI部位定位算法。从PTB数据集中筛选正常和MI病例的12导联心电图(ECG)样本,将ECG信号... 为实现临床医疗设备快速辅助诊断心肌梗死(MI)发生的部位。在轻量化卷积神经网络MobileNetV2的基础上结合协调注意力(CA)机制设计出了一种高准确率的MI部位定位算法。从PTB数据集中筛选正常和MI病例的12导联心电图(ECG)样本,将ECG信号进行去噪处理。使用差分阈值法检测出ECG信号的R峰,根据R峰分割出心拍样本,使用心拍数据对所设计模型进行训练和测试。使用准确率、精度、灵敏度、特异性和混淆矩阵对模型的分类性能进行了评估。将训练集迭代60轮后,测试集的准确率达到了99.91%。结果表明,融合CA模块的MobileNetV2模型对于MI部位的定位具有很好的效果,有助于医疗设备实现MI的快速辅助诊断。 展开更多
关键词 轻量化卷积神经网络 心肌梗死定位 mobilenetv2 注意力机制 心电图
在线阅读 下载PDF
基于改进CBAM注意力机制的MobileNetV2玉米种子品种识别研究 被引量:9
6
作者 牛思琪 马睿 +4 位作者 许晓琳 梁敖 穆春华 许金普 马德新 《中国粮油学报》 CAS CSCD 北大核心 2024年第3期159-165,共7页
玉米是我国主要粮食作物,有较高的营养价值和经济价值。不同的地域环境适宜种植的玉米品种不同,但由于玉米种子在外形方面存在的差异较小,所以仅凭肉眼很难对其进行快速准确的识别。为实现玉米种子品种的准确识别,研究采集了9种玉米种... 玉米是我国主要粮食作物,有较高的营养价值和经济价值。不同的地域环境适宜种植的玉米品种不同,但由于玉米种子在外形方面存在的差异较小,所以仅凭肉眼很难对其进行快速准确的识别。为实现玉米种子品种的准确识别,研究采集了9种玉米种子图像共2792张建立数据集,并按照7∶2∶1的比例随机划分训练集、验证集和测试集。将注意力机制CBAM引入轻量化模型MobileNetV2,对CBAM的串行方式进行改进,构建一个新型注意力模块E_CBAM,并通过对比不同的压缩比,选出效果最佳的压缩比为4,提出了E_CBAM_MobileNetV2模型。实验表明E_CBAM_MobileNetV2的准确率为98.18%,相较于MobileNetV2提高了5.45%。 展开更多
关键词 图像分类 玉米种子 mobilenetv2 CBAM
在线阅读 下载PDF
基于MobileNetV2-CBAM的机收场景下冬小麦成熟期在线分类识别方法 被引量:3
7
作者 王发明 倪昕东 +3 位作者 张旗 陶伟 陈度 毛旭 《农业机械学报》 CSCD 北大核心 2024年第S1期71-80,100,共11页
小麦成熟期在线精准分类识别将为实现联合收获机的智能化调控提供有效支撑。本文提出一种基于车载相机和深度学习结合的冬小麦成熟期在线分类方法。以车载相机拍摄的实时图像为主,无人机拍摄的图像为辅,构建小麦乳熟-蜡熟初期、蜡熟后期... 小麦成熟期在线精准分类识别将为实现联合收获机的智能化调控提供有效支撑。本文提出一种基于车载相机和深度学习结合的冬小麦成熟期在线分类方法。以车载相机拍摄的实时图像为主,无人机拍摄的图像为辅,构建小麦乳熟-蜡熟初期、蜡熟后期-完熟初期、完熟后期-枯熟期和已收割区数据集(4400幅)。针对机收环境复杂、小麦图像模糊等问题,以MobileNetV2为基础网络结构,在特征提取后添加卷积注意力模块(Convolutional block attention module,CBAM)提升对图像特征的自适应提取能力。为了评估模型可信度,采用可视化技术观察模型对图像的关注区域。以不同分类模型为对比,对建立的MobileNetV2-CBAM模型性能进行评价。试验结果表明,MobileNetV2-CBAM模型在测试集中的分类识别准确率达到99.5%,相比于MobileNetV2高0.7个百分点;与ResNet和Swin Transformer模型相比,在分类精度未发生明显差异的前提下,MobileNetV2-CBAM模型内存占用量(8.73 MB)仅为其1/8和1/11。为了验证模型实际应用效果,田间试验结果表明,在车速4~6 km/h条件下,每隔1 s识别1幅图像,成熟期分类识别精度为96.8%,满足机收场景下的小麦成熟期在线分类准确性和实时性要求。 展开更多
关键词 小麦 成熟期 mobilenetv2-CBAM 深度学习 车载相机
在线阅读 下载PDF
基于MobileNetV2-DeepLabv3+的混凝土坝水下裂缝语义分割模型 被引量:4
8
作者 何旺 钮新强 +1 位作者 田金章 朱延涛 《水利水电科技进展》 CSCD 北大核心 2024年第6期106-112,共7页
为解决深度学习算法难以有效检测混凝土坝水下裂缝的问题,构建了基于MobileNetV2-DeepLabv3+的混凝土坝水下裂缝语义分割模型。该模型引入轻量化网络MobileNetV2,同时将深层特征下采样倍数降为8,以提高小数据集工况下的识别准确率和推... 为解决深度学习算法难以有效检测混凝土坝水下裂缝的问题,构建了基于MobileNetV2-DeepLabv3+的混凝土坝水下裂缝语义分割模型。该模型引入轻量化网络MobileNetV2,同时将深层特征下采样倍数降为8,以提高小数据集工况下的识别准确率和推理速度;将交叉熵损失函数与Dice损失函数的组合作为模型的损失函数,以缓解类别不平衡问题。工程实例验证结果表明:该模型在测试集上的平均像素准确率和平均交并比分别高达90.87%和86.33%,满足水下裂缝语义分割精度要求;典型工况下的混凝土坝水下裂缝的分割效果优于其他对比模型,泛化能力强;模型具有内存占比小、推理速度快的特点,可用于混凝土坝水下裂缝的检测。 展开更多
关键词 混凝土坝 水下裂缝 mobilenetv2-DeepLabv3+ 语义分割 机器视觉
在线阅读 下载PDF
基于SDP和改进SAM⁃MobileNetv2的滚动轴承故障诊断方法研究 被引量:3
9
作者 张天缘 孙虎儿 +1 位作者 朱继扬 赵扬 《机械强度》 CAS CSCD 北大核心 2024年第4期787-794,共8页
针对传统的滚动轴承故障诊断方法难以准确高效的实现故障分类,提出了一种融合对称点模式(Symmetrized Dot Pattern,SDP)和改进SAM⁃MobileNetv2的滚动轴承故障分类方法。首先,将轴承振动信号通过SDP算法转化为含有丰富特征信息的二维图... 针对传统的滚动轴承故障诊断方法难以准确高效的实现故障分类,提出了一种融合对称点模式(Symmetrized Dot Pattern,SDP)和改进SAM⁃MobileNetv2的滚动轴承故障分类方法。首先,将轴承振动信号通过SDP算法转化为含有丰富特征信息的二维图像。然后,将二维图像输入到改进SAM⁃MobileNetv2网络模型中,对故障特征信息进行提取和分类。在改进SAM⁃MobileNetv2网络中,使用自适应激活函数ACON(Activate or not)对SAM⁃MobileNetv2中的ReLU6激活函数进行替换,提高模型分类性能。最后,将本模型与多种网络模型做对比。试验结果表明,本模型可以准确高效地实现对滚动轴承故障的分类,使用凯斯西储大学轴承故障数据的准确率为99.5%,使用渥太华大学轴承故障数据的准确率为97.2%。 展开更多
关键词 滚动轴承 对称点模式 SAM⁃mobilenetv2模型 故障诊断
在线阅读 下载PDF
基于MobileNetV2和卷积注意力机制的轻量化玉米籽粒品种识别研究 被引量:1
10
作者 孙孟研 孙彤辉 +2 位作者 郝凤琦 穆春华 马德新 《山东农业科学》 北大核心 2024年第12期139-146,共8页
快速、准确地识别农作物品种对我国粮食安全和农业发展具有重要意义。为实现玉米种子的快速鉴别与保护,本研究提出一种基于MobileNetV2和卷积注意力机制的玉米籽粒品种识别算法。首先购得市面上9个常规玉米品种的籽粒,使用佳能80D型相... 快速、准确地识别农作物品种对我国粮食安全和农业发展具有重要意义。为实现玉米种子的快速鉴别与保护,本研究提出一种基于MobileNetV2和卷积注意力机制的玉米籽粒品种识别算法。首先购得市面上9个常规玉米品种的籽粒,使用佳能80D型相机对其胚面和胚乳面进行图像采集,构建了包含3408张图像的玉米籽粒识别数据集,按照7∶2∶1划分训练集、验证集和测试集,并对训练集图像进行数据增强处理;然后设计注意力模块ISPAM(Improved Spatial Attention Module),即在卷积注意力模块(CBAM)基础上,提出一种新的通道注意力模块ICAM对CBAM的通道注意力机制进行改进,同时引入空间金字塔池化(SPP)模块替换CBAM空间注意力模块中的平均池化模块和最大池化模块,构建了玉米籽粒品种识别模型MobileNetV2_ISPAM。将MobileNetV2_ISPAM与添加其他注意力模块的模型对比,结果表明,MobileNetV2_ISPAM在测试集上的准确率为99.11%,均明显高于MobileNetV2以及添加SE(Squeeze-and-Excitation)、CBAM注意力机制的模型。梯度加权类激活映射网络可视化表明,MobileNetV2_ISPAM更关注玉米籽粒图像中的显著特征,从而提高了模型的准确率。此外,该模型的参数量仅为7.15 M,适合移动端的便携化部署。本研究在保证模型轻量高效的前提下,提升其抵抗过拟合能力和分类性能,为以后基于深度学习的移动端玉米籽粒图像识别模型研究提供了思路。 展开更多
关键词 mobilenetv2 ISPAM注意力机制 深度学习 玉米籽粒 品种识别
在线阅读 下载PDF
基于MobileNetV2的小肠溃疡病灶图像识别 被引量:1
11
作者 刘张 郭旭东 李胜男 《中国生物医学工程学报》 CAS CSCD 北大核心 2024年第1期70-79,共10页
小肠镜下的溃疡病变形态复杂,鉴别诊断困难。为实现小肠溃疡病变的人工智能辅助识别,提高诊断效率和准确度,构建了一种基于MobileNetV2网络的小肠溃疡性病灶识别算法。以MobileNetV2为主干特征提取网络,将输出特征图进行空间上的多尺度... 小肠镜下的溃疡病变形态复杂,鉴别诊断困难。为实现小肠溃疡病变的人工智能辅助识别,提高诊断效率和准确度,构建了一种基于MobileNetV2网络的小肠溃疡性病灶识别算法。以MobileNetV2为主干特征提取网络,将输出特征图进行空间上的多尺度提取后输入至通道注意力模块中进行特征重标定,并将多个尺度上的特征进行融合后输出分类。为了缓解数据集不均衡所带来的影响,提出了一种改进的损失函数。所用数据集来自上海长海医院282位患者的共2124张小肠镜临床图像。采用所提方法对该数据集测试的识别准确率为87.86%,5折交叉验证平均准确率为87.27%。使用梯度加权类激活图进行了可视化验证,同时将所提模块应用在不同主干网络架构上,均具有良好的通用性。研究表明,该网络模型能够更加注重病灶信息,加强病灶特征判别指向,对于小肠溃疡图像具有较高的识别准确率,可初步实现小肠溃疡病灶的自动识别。 展开更多
关键词 医学图像分类 小肠溃疡 mobilenetv2 空间多尺度特征 特征重标定
在线阅读 下载PDF
基于改进PSPnet-MobileNetV2的煤岩界面快速精准识别 被引量:5
12
作者 王海舰 刘丽丽 +1 位作者 赵雪梅 张强 《振动.测试与诊断》 EI CSCD 北大核心 2024年第4期793-800,832,833,共10页
针对短时间主动热激励作用下煤岩介质表征差异不明显,不易快速、准确识别煤岩界面的难题,提出一种基于改进金字塔场景解析网络(pyramid scene parsing network,简称PSPnet)模型-MobileNetV2的煤岩界面快速精准识别方法。通过搭建煤岩主... 针对短时间主动热激励作用下煤岩介质表征差异不明显,不易快速、准确识别煤岩界面的难题,提出一种基于改进金字塔场景解析网络(pyramid scene parsing network,简称PSPnet)模型-MobileNetV2的煤岩界面快速精准识别方法。通过搭建煤岩主动红外试验平台,采集并获取短时主动热激励作用下的煤岩界面红外热图像,构建了煤岩红外图像数据集;对传统PSPnet模型进行改进,采用轻量级网络模型MobileNetV2作为主干网络提取特征,大幅降低了网络模型所占内存和训练时间,同时将注意力机制模块(convolutional block attention module,简称CBAM)与金字塔场景解析(pyramid scene parsing,简称PSP)模块的上采样特征层和PSPnet网络模型的浅层特征层进行融合,有效提升模型对特征的细化能力。试验结果表明:基于改进的PSPnet-MobileNetV2网络模型所占内存仅为9.12 MB,较原始PSPnet模型减少了94.88%;煤和岩的交并比为96.52%和96.87%,分别提升了8.29%和7.7%;像素准确度分别为97.25%和99.15%,较原始网络模型分别提升了7.32%和1.64%;测试时间降低了53.70%。该方法为煤岩界面的快速和预先精准识别提供了一种有效技术手段。 展开更多
关键词 煤岩识别 主动红外激励 金字塔场景解析网络(PSPnet) mobilenetv2 注意力机制模块
在线阅读 下载PDF
基于改进MobileNetV2的钢板表面缺陷检测
13
作者 周建新 何洋 《组合机床与自动化加工技术》 北大核心 2024年第9期183-187,共5页
钢板表面缺陷伤痕类型多,行业数据公开率极低,训练样本不足使得深度学习难以应用于该领域。且MobileNetV2网络模型特征表示能力有限、鲁棒性较弱。针对上述问题,提出一种改进的MobileNetV2网络模型,可在小规模样本检测中拥有较高的准确... 钢板表面缺陷伤痕类型多,行业数据公开率极低,训练样本不足使得深度学习难以应用于该领域。且MobileNetV2网络模型特征表示能力有限、鲁棒性较弱。针对上述问题,提出一种改进的MobileNetV2网络模型,可在小规模样本检测中拥有较高的准确率。重新设定网络模型中激活函数的上限,使模型更好地捕捉输入数据中的复杂模式和特征。提出一种新的瓶颈结构并减少网络层数,可以在通道维度上对特征图进行整合,提高模型的表示能力和特征提取能力。增强特征识别,提取更丰富和更具判别性的特征,提高模型的准确性和鲁棒性。实验结果表明,改进的MobileNetV2网络模型准确率高达98.7%,高于原网络和其他对比卷积神经网络,能有效检测小样本的钢板表面缺陷。 展开更多
关键词 mobilenetv2 激活函数 瓶颈结构 特征增强
在线阅读 下载PDF
基于MobileNetV2和迁移学习的玉米病害识别研究 被引量:20
14
作者 刘合兵 鲁笛 席磊 《河南农业大学学报》 CAS CSCD 2022年第6期1041-1051,共11页
【目的】解决玉米叶部病害识别效率低、精度低的问题,探究新的玉米病害识别方法。【方法】将卷积神经网络MobileNetV2和迁移学习相结合,分别采用迁移学习中特征提取、全部迁移和微调3种训练方式获得3种模型,并与全新训练的MobileNetV2... 【目的】解决玉米叶部病害识别效率低、精度低的问题,探究新的玉米病害识别方法。【方法】将卷积神经网络MobileNetV2和迁移学习相结合,分别采用迁移学习中特征提取、全部迁移和微调3种训练方式获得3种模型,并与全新训练的MobileNetV2模型进行对比。【结果】微调模型经历较少的epoch便可取得较好的识别效果,模型准确率达99.25%,比全新训练的MobileNetV2模型提高了3.09%。在上述研究基础上,设计并实现了基于移动端的玉米病害识别系统,玉米叶部病害的平均识别准确率为84%,用时仅为1.16 s。【结论】本研究提出的玉米病害识别方法能更好应用于日常检测玉米病害,为相关病害防治提供参考。 展开更多
关键词 玉米病害 卷积神经网络 迁移学习 mobilenetv2 识别系统
在线阅读 下载PDF
基于MobileNetV2和IFPN改进的SSD垃圾实时分类检测方法 被引量:14
15
作者 赵珊 刘子路 +1 位作者 郑爱玲 高雨 《计算机应用》 CSCD 北大核心 2022年第S01期106-111,共6页
针对垃圾分类检测任务中检测目标尺寸不一和小目标检测精度不高等问题,构建一种基于隐式特征金字塔网络(IFPN)和MobileNetV2的改进SSD模型的分类检测方法,对垃圾进行实时分类检测。首先,将改进后的MobileNetV2引入SSD,加入带有空洞卷积... 针对垃圾分类检测任务中检测目标尺寸不一和小目标检测精度不高等问题,构建一种基于隐式特征金字塔网络(IFPN)和MobileNetV2的改进SSD模型的分类检测方法,对垃圾进行实时分类检测。首先,将改进后的MobileNetV2引入SSD,加入带有空洞卷积的空间金字塔池化模块(ASPP),在降低网络模型计算复杂度的同时保证网络实时性和精确性;其次,采用IFPN从网络的深层到浅层逐级融合SSD,更精确地检测出小目标;最后,使用Focal Loss函数调节正负样本之间的权重。实验结果表明,在阈值为0.4时,所提方法比传统SSD平均精确率均值(mAP)提高了4.84个百分点,检测耗时减少了72.7%,能满足边缘计算设备对模型的各项要求。 展开更多
关键词 垃圾分类 目标检测 mobilenetv2 SSD 空间金字塔池化 隐式特征金字塔网络
在线阅读 下载PDF
基于改进MobileNetV2的人脸表情识别 被引量:11
16
作者 严春满 张翔 王青朋 《计算机工程与科学》 CSCD 北大核心 2023年第6期1071-1078,共8页
针对现有深度卷积神经网络参数量庞大,导致人脸表情识别场景受限的问题,提出一种基于改进轻量级卷积神经网络的人脸表情识别模型。该模型以MobileNetV2轻量级特征提取网络为主要框架,通过压缩网络宽度因子与整体维度,减少网络参数量与... 针对现有深度卷积神经网络参数量庞大,导致人脸表情识别场景受限的问题,提出一种基于改进轻量级卷积神经网络的人脸表情识别模型。该模型以MobileNetV2轻量级特征提取网络为主要框架,通过压缩网络宽度因子与整体维度,减少网络参数量与计算量;引入SandGlass模块对网络倒残差模块进行改进,减少特征信息在网络传输中的丢失;同时嵌入高效通道注意力机制,提高网络对于特征信息的提取能力。在人脸表情数据集FER2013和CK+上进行实验,所提网络模型的人脸表情识别准确率达到了68.96%与95.96%,分别高于MobileNetV21.06%与6.14%,且参数量下降82.28%,实验结果验证了网络模型改进措施的有效性。 展开更多
关键词 人脸表情识别 轻量级网络 mobilenetv2 倒残差模块 通道注意力
在线阅读 下载PDF
基于改进MobilenetV2网络的声光图像融合水下目标分类方法 被引量:8
17
作者 巩文静 田杰 +1 位作者 李宝奇 刘纪元 《应用声学》 CSCD 北大核心 2022年第3期462-470,共9页
针对小样本条件下水下目标分类准确率低、计算资源量大的问题,提出一种声光图像融合目标分类方法。首先,对MobilenetV2网络进行改进,去掉第9层之后的网络层,并将该层卷积通道数改为128,通过Flatten层进行数据降维,增加一个全连接层得到... 针对小样本条件下水下目标分类准确率低、计算资源量大的问题,提出一种声光图像融合目标分类方法。首先,对MobilenetV2网络进行改进,去掉第9层之后的网络层,并将该层卷积通道数改为128,通过Flatten层进行数据降维,增加一个全连接层得到分类结果;其次,设计一种融合网络结构,将声光图像成对输入网络进行特征提取,在中间层利用通道拼接算法实现特征图融合,使用融合特征进行目标分类。在真实数据集上对网络进行训练,结果表明,改进的MobilenetV2网络对水下目标的分类性能更好,融合网络的分类准确率相比融合前有所提高,更加适用于水下目标分类任务。 展开更多
关键词 改进mobilenetv2 声学图像 光学图像 图像融合 水下目标分类
在线阅读 下载PDF
融合MobileNetv2和注意力机制的轻量级人像分割算法 被引量:11
18
作者 王欣 王美丽 边党伟 《计算机工程与应用》 CSCD 北大核心 2022年第7期220-228,共9页
针对人像分割精度不高、效率不佳的问题,提出一种融合MobileNetv2和注意力机制的轻量级人像分割算法,以实现对人像半身图进行分割。在编码器-解码器的U型网络结构的基础上,通过将MobileNetv2作为骨干网络,精简上采样过程,有效地减少了... 针对人像分割精度不高、效率不佳的问题,提出一种融合MobileNetv2和注意力机制的轻量级人像分割算法,以实现对人像半身图进行分割。在编码器-解码器的U型网络结构的基础上,通过将MobileNetv2作为骨干网络,精简上采样过程,有效地减少了网络的参数量,有助于网络的迁移和训练。融合注意力机制的网络结构可更有效地学习人像特征,同时引进混合损失函数,有利于人像边缘像素点分类。该网络结构可选用人像半身图作为输入,并输出对应的图像掩膜。在Human_Matting和EG1800公开数据集上进行了实验,结果表明该算法精度分别达98.3%(Matting)、97.8%(EG1800),相较于PortraitNet预测96.3%(Matting)、95.8%(EG1800)的准确度和DeepLabv3+网络的96.8%(Matting)、96.4%(EG1800)准确度有明显提升,可以清晰地将目标人物和背景分离开。算法IOU指标可达98.6%(Matting)、98.2%(EG1800),在实验平台上分割测试集每张图片平均时间约0.015 s,可应用于轻量化场景中,为场景人像分割提供新的理论基础和研究思路。 展开更多
关键词 人像分割 mobilenetv2 编码器-解码器 注意力机制 混合损失函数
在线阅读 下载PDF
基于改进MobileNetV2的恶意代码分类方法 被引量:5
19
作者 轩勃娜 李进 +1 位作者 宋亚飞 马泽煊 《计算机应用》 CSCD 北大核心 2023年第7期2217-2225,共9页
针对传统恶意代码分类方法存在的精度不足、预测时间成本高和抗混淆能力弱等问题,提出一种基于改进MobileNetV2的恶意代码分类方法。首先,针对恶意代码加密和混淆等问题,使用坐标注意力(CA)方法引入更大范围的空间位置来增强恶意代码图... 针对传统恶意代码分类方法存在的精度不足、预测时间成本高和抗混淆能力弱等问题,提出一种基于改进MobileNetV2的恶意代码分类方法。首先,针对恶意代码加密和混淆等问题,使用坐标注意力(CA)方法引入更大范围的空间位置来增强恶意代码图像的特征;然后,针对从头开始训练导致的训练成本过高的问题,使用迁移学习(TL)来改进MobileNetV2的学习方式以提升抗混淆能力;最后,针对传统深度学习网络计算量大和收敛慢的问题,使用MobileNetV2轻量化卷积网络模型,并结合Ranger21改进训练方式以促进网络迅速收敛。实验结果表明:上述方法对Malimg数据集和DataCon数据集的准确率分别达到了99.26%和96.98%。在malimg数据集相较于AlexNet方法在准确率上平均提升了1.49%,检测效率上平均提升了45.31%;在DataCon数据集相较于集成学习方法准确率平均提升了1.14%。可见,基于改进MobileNetV2的恶意代码分类方法可以提升模型的泛化能力、抗混淆能力与分类效率。 展开更多
关键词 网络安全 恶意代码分类 迁移学习 mobilenetv2 坐标注意力 Ranger21优化算法
在线阅读 下载PDF
基于重参数化MobileNetV2的农作物叶片病害识别模型 被引量:18
20
作者 彭玉寒 李书琴 《农业工程学报》 EI CAS CSCD 北大核心 2023年第17期132-140,共9页
针对基于卷积神经网络识别农作物叶片病害存在参数众多,计算量大且实时性差的问题,提出一种轻量级农作物叶片病害识别模型RLDNet(reparameterized leaf diseases identification network)。首先,基于MobileNetV2利用重参数化倒残差模块... 针对基于卷积神经网络识别农作物叶片病害存在参数众多,计算量大且实时性差的问题,提出一种轻量级农作物叶片病害识别模型RLDNet(reparameterized leaf diseases identification network)。首先,基于MobileNetV2利用重参数化倒残差模块提升推理速度,并设计浅而窄的网络结构增强对浅层特征的提取,降低模型参数量。其次,使用轻量级ULSAM(ultra-lightweight subspace attention module)注意力机制,结合叶片病害特征,强化模型对病害区域的关注能力。最后,利用DepthShrinker剪枝方法对模型进行剪枝进一步减小空间占用。RLDNet在PlantVillage数据集上识别准确率达99.53%,参数量为0.65 M,对单张叶片病害图像的推理时间为2.51 ms。在自建叶片病害数据集上获得了98.49%识别准确率,比MobileNetV3、ShuffleNetV2等轻量级模型识别准确率更高,更为轻量。 展开更多
关键词 农作物 模型 病害识别 复杂背景 mobilenetv2 重参数化 轻量化
在线阅读 下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部