This paper describes numerical simulation on dispersion of the solid-liquid mixed fuel driven by explosion load. A model used in numerical calculation for dispersion of solid-liquid mixed fuel was established in this ...This paper describes numerical simulation on dispersion of the solid-liquid mixed fuel driven by explosion load. A model used in numerical calculation for dispersion of solid-liquid mixed fuel was established in this study. The concentration and turbulent intensity in the multiphase cloud of the solidliquid mixed fuel were obtained by numerical simulation. It was found that the fuel concentration tended to be 0.15 kg/m^3, the turbulence intensity tended to be 7 in 90 ms. The numerical results agree with those measured in the experiment.展开更多
成品油混合浓度的预测对成品油顺序输送过程中的安全监控、混油段分割具有重要的意义。本研究配制92#汽油-3#航煤以及3#航煤-0#车柴两组包含不同浓度的混合样品,并对其进行拉曼光谱采集;依次采用归一化、多元散射校正、BaselineWavelet...成品油混合浓度的预测对成品油顺序输送过程中的安全监控、混油段分割具有重要的意义。本研究配制92#汽油-3#航煤以及3#航煤-0#车柴两组包含不同浓度的混合样品,并对其进行拉曼光谱采集;依次采用归一化、多元散射校正、BaselineWavelet基线校正3种光谱预处理方法进行优化;之后采用改进的栈式稀疏自编码器(Stacked Sparse Autoencoder,SSAE)模型对预处理之后的拉曼光谱进行稀疏特征提取,并结合全连接层进行回归预测;最后根据均方根误差(Root Mean Square Error,RMSE)和决定系数(R^(2))两项评价指标,与偏最小二乘回归(Partial Least Square Regression,PLSR)、最小二乘支持向量回归(Least Square Support Vector Machine,LSSVR)以及SSAE 3种模型进行对比。结果表明:改进的SSAE-FC模型表现出更优的预测精度和稳定性,92#汽油-3#航煤混油测试集的R^(2)和RMSEC指标分别为0.9952和0.8932,3#航煤-0#车柴混油测试集的R^(2)和RMSEC指标分别为0.9837和1.1967,且学习得到的稀疏特征的可解释性强。展开更多
基金supported by National Key R&D Program of China(No.2016YFC0801800)the opening project of State Key Laboratory of Explosion Science and Technology(Beijing Institute ofTechnology)(No.KFJJ18-03M)
文摘This paper describes numerical simulation on dispersion of the solid-liquid mixed fuel driven by explosion load. A model used in numerical calculation for dispersion of solid-liquid mixed fuel was established in this study. The concentration and turbulent intensity in the multiphase cloud of the solidliquid mixed fuel were obtained by numerical simulation. It was found that the fuel concentration tended to be 0.15 kg/m^3, the turbulence intensity tended to be 7 in 90 ms. The numerical results agree with those measured in the experiment.
文摘成品油混合浓度的预测对成品油顺序输送过程中的安全监控、混油段分割具有重要的意义。本研究配制92#汽油-3#航煤以及3#航煤-0#车柴两组包含不同浓度的混合样品,并对其进行拉曼光谱采集;依次采用归一化、多元散射校正、BaselineWavelet基线校正3种光谱预处理方法进行优化;之后采用改进的栈式稀疏自编码器(Stacked Sparse Autoencoder,SSAE)模型对预处理之后的拉曼光谱进行稀疏特征提取,并结合全连接层进行回归预测;最后根据均方根误差(Root Mean Square Error,RMSE)和决定系数(R^(2))两项评价指标,与偏最小二乘回归(Partial Least Square Regression,PLSR)、最小二乘支持向量回归(Least Square Support Vector Machine,LSSVR)以及SSAE 3种模型进行对比。结果表明:改进的SSAE-FC模型表现出更优的预测精度和稳定性,92#汽油-3#航煤混油测试集的R^(2)和RMSEC指标分别为0.9952和0.8932,3#航煤-0#车柴混油测试集的R^(2)和RMSEC指标分别为0.9837和1.1967,且学习得到的稀疏特征的可解释性强。