目的:构建卷烟制丝过程成品烟丝质量模拟预测模型。方法:使用平均影响值法(the Mean Impact Value,MIV)对制丝加工过程工艺参数进行筛选,然后通过反向传播(Back-Propagation,BP)神经系统构建起制丝关键工艺参数和成品烟丝质量的模拟模...目的:构建卷烟制丝过程成品烟丝质量模拟预测模型。方法:使用平均影响值法(the Mean Impact Value,MIV)对制丝加工过程工艺参数进行筛选,然后通过反向传播(Back-Propagation,BP)神经系统构建起制丝关键工艺参数和成品烟丝质量的模拟模型。结果:通过模拟数据与实测数据比较,填充值的模拟预测平均相对误差为3.16%;整丝率的模拟预测平均相对误差为0.67%;碎丝率的模拟预测平均相对误差为5.33%。结论:该模型预测值与实测值之间相对误差较小,精确性高,该模型适用于卷烟制丝生产过程工艺参数仿真优化。展开更多
随着煤层气勘探的不断深入,对煤层含气量预测精度提出了更高的要求。基于煤层含气量测井响应特征,分析测井参数与含气量的相关性,提出MIV(MeanImpactValue)技术与LSSVM(Least Squares Support Vector Machine)结合的测井参数优选策略,...随着煤层气勘探的不断深入,对煤层含气量预测精度提出了更高的要求。基于煤层含气量测井响应特征,分析测井参数与含气量的相关性,提出MIV(MeanImpactValue)技术与LSSVM(Least Squares Support Vector Machine)结合的测井参数优选策略,优选最优测井参数作为网络建模的输入自变量组合,通过粒子群算法优化LSSVM网络核心参数,最后构建一套适用于煤层含气量预测的MIV-PSO-LSSVM模型。在此基础上,分别对比分析LSSVM、PSO-LSSVM、MIV-LSSVM和MIV-PSO-LSSVM模型对煤层含气量的预测性能,并与传统多元回归方法进行了对比,利用拟合优度和均方根误差对此5类模型进行评价。结果表明:PSO优化下的LSSVM模型预测精度得到有效提升,结合MIV方法优选测井参数可大幅度改善神经网络建模性能,MIV-PSO-LSSVM模型可实现煤层含气量高精度预测,为煤层气勘探及其储层评价提供新的技术支撑,且本研究的建模策略及思想可广泛应用于其他机器学习建模研究领域。展开更多
文摘目的:构建卷烟制丝过程成品烟丝质量模拟预测模型。方法:使用平均影响值法(the Mean Impact Value,MIV)对制丝加工过程工艺参数进行筛选,然后通过反向传播(Back-Propagation,BP)神经系统构建起制丝关键工艺参数和成品烟丝质量的模拟模型。结果:通过模拟数据与实测数据比较,填充值的模拟预测平均相对误差为3.16%;整丝率的模拟预测平均相对误差为0.67%;碎丝率的模拟预测平均相对误差为5.33%。结论:该模型预测值与实测值之间相对误差较小,精确性高,该模型适用于卷烟制丝生产过程工艺参数仿真优化。
文摘针对光伏发电功率受气象因素影响而具有波动性与随机性问题,提出一种基于最优相似度与IMEARBFNN的短期光伏发电功率预测方法。利用相关性分析与平均影响值(Mean Impact Value,MIV)算法选取出温度、湿度、辐照度3个气象因素作为输入指标,通过最优相似度理论计算得到预测日的相似日。将相似日数据与预测日气象数据作为输入,采用改进思维进化算法(Improved Mind Evolutionary Algorithm,IMEA)优化径向基神经网络(Radical Basis Function Neural Network,RBFNN)模型对预测日光伏发电功率进行预测。结果表明改进思维进化算法优化径向基神经网络可以提高模型预测精度,为光伏发电功率预测提供一种有效方法。
文摘随着煤层气勘探的不断深入,对煤层含气量预测精度提出了更高的要求。基于煤层含气量测井响应特征,分析测井参数与含气量的相关性,提出MIV(MeanImpactValue)技术与LSSVM(Least Squares Support Vector Machine)结合的测井参数优选策略,优选最优测井参数作为网络建模的输入自变量组合,通过粒子群算法优化LSSVM网络核心参数,最后构建一套适用于煤层含气量预测的MIV-PSO-LSSVM模型。在此基础上,分别对比分析LSSVM、PSO-LSSVM、MIV-LSSVM和MIV-PSO-LSSVM模型对煤层含气量的预测性能,并与传统多元回归方法进行了对比,利用拟合优度和均方根误差对此5类模型进行评价。结果表明:PSO优化下的LSSVM模型预测精度得到有效提升,结合MIV方法优选测井参数可大幅度改善神经网络建模性能,MIV-PSO-LSSVM模型可实现煤层含气量高精度预测,为煤层气勘探及其储层评价提供新的技术支撑,且本研究的建模策略及思想可广泛应用于其他机器学习建模研究领域。