Geological setting\;Jinding superlarge Pb\|Zn deposit lies in the Lanping basin between the Lancangjiang fracture zone and the Jinshajiang\|Ailaoshan fracture zone. The Lanping basin is a Meso\|Cenozoic rifting basin ...Geological setting\;Jinding superlarge Pb\|Zn deposit lies in the Lanping basin between the Lancangjiang fracture zone and the Jinshajiang\|Ailaoshan fracture zone. The Lanping basin is a Meso\|Cenozoic rifting basin whose basement consists of the Paleozoic strata. Mesozoic paralic and continental sediments with a thickness of about 20000m deposited in the basin. In the Paleocene, gypsum\|salt\|bearing strata with a thickness of more than 1000m accumulated. In the Cenozoic, collision of the Indian plate with the Eurasian plate resulted in strong folding and napping and subsequent extensions in the Oligocene and Pliocene. The extensions were responsible for alkaline magmatic intrusion in the centre and alkaline magmatic extrusion in the east.Faulting is well developed. N\|S\|trending Bijiang fault with a length of 120km links with the Jinshajiang fracture zone in the north and with the Lancangjiang fracture zone in the south, controlling on the Cenozoic Lanping rifting basin and acting as passage\|way for ore fluids.展开更多
The finite element method was used to solve fluid dynamic interaction problems between the crust and mantle of the Earth. To consider different mechanical behaviours, the lithosphere consisting of the crust and upper ...The finite element method was used to solve fluid dynamic interaction problems between the crust and mantle of the Earth. To consider different mechanical behaviours, the lithosphere consisting of the crust and upper mantle was simulated as fluid-saturated porous rocks, while the upper aesthenospheric part of the mantle was simulated as viscous fluids. Since the whole lithosphere was computationally simulated, the dynamic interaction between the crust and the upper mantle was appropriately considered. In particular, the mixing of mantle fluids and crustal fluids was simulated in the corresponding computational model. The related computational simulation results from an example problem demonstrate that the mantle fluids can flow into the crust and mix with the crustal fluids due to the resulting convective flows in the crust-mantle system. Likewise, the crustal fluids can also flow into the upper mantle and mix with the mantle fluids. This kind of fluids mixing and exchange is very important to the better understanding of the governing processes that control the ore body formation and mineralization in the upper crust of the Earth.展开更多
The well preserved eclogitic rocks of the Tso Morari dome in eastern Ladakh, northwest Himalaya, provide information relevant to the exhumation of high pressure/low temperature rocks, and the early stage of the Himala...The well preserved eclogitic rocks of the Tso Morari dome in eastern Ladakh, northwest Himalaya, provide information relevant to the exhumation of high pressure/low temperature rocks, and the early stage of the Himalayan orogeny. The Tso Morari unit outcrops south of the Indus suture zone (Fig.1). The eclogitic dome is underlined on its eastern part by the Zildat normal fault where serpentinite lenses and partially hydrated peridotites are abundant. The close association of the high pressure rocks and serpentinites suggests a possible role of serpentinites in the exhumation of ultrahigh\|pressure rocks. To evaluate this possibility, geochemical analyses were carried out on the serpentinites closely associated with the Tso Morari eclogites.展开更多
Reversions as receiver functions and ACH were performed using the teleseismic data acquired from the seismic array that were deployed across Tian Shan in Xinjiang in 1997\|1998 jointly by Sino\|French seismic crew.The...Reversions as receiver functions and ACH were performed using the teleseismic data acquired from the seismic array that were deployed across Tian Shan in Xinjiang in 1997\|1998 jointly by Sino\|French seismic crew.The results suggest the crustal shortening and thickening in the study area that are well expressed by the thickening in lower crust and the uplifting of Tian Shan in the collision between Euro\|Asian and Indian plates. Underthrusting in the intra\|continental collision model turns out to be asymmetrical, with the northward in the south much stronger than the southward in the north. The cause of the steepness of the southward underthrust is likely to rest on the strong extrusion. Going further deep, the curving end of the cold underthrusting zone may detach, penetrating its own way. The ongoing uplifting of Tian Shan is given birth mostly by the underthrusting on its south and the squeezing force from both sides. The underthrusting zone is composed of compact ancestral crystalline rocks. The thickness of the crust varys from 65km beneath the main body of Tian Shan to 41km beneath the Tarim and Zengar basins on sides with certain degree of thickening. The major faulting zones in the area go precipitously in the scope of crust, with those in the low\|velocity bodies closely associated to the activities of molten mantle materials and seismicity.展开更多
Recently, there is an urgent need in high pressure community for a pressure scale whose accuracy is comparable to the high precision of experimental data.One of the difficulties is the lack of an absolute scale,in... Recently, there is an urgent need in high pressure community for a pressure scale whose accuracy is comparable to the high precision of experimental data.One of the difficulties is the lack of an absolute scale,in particular at high temperature, to evaluate the EOS of standard materials.……展开更多
Cenozoic high\|K igneous rocks are widely distributed in eastern Tibet. These rocks are exposed as flows, dykes and small intrusions along a narrow north\|south trending zone, which follows Tertiary fold belts and the...Cenozoic high\|K igneous rocks are widely distributed in eastern Tibet. These rocks are exposed as flows, dykes and small intrusions along a narrow north\|south trending zone, which follows Tertiary fold belts and the Batang—Lijiang and Ailao Shan—Red River strike\|slip systems. Although several models were proposed to interpret their petrogenesis (Deng, 1989; Arnaud et al., 1991; Turner et al., 1996; Yin et al., 1995; Miller et al., 1999), their origin still remains hotly debated. Moreover, the published results were only focused on the high\|K igneous rocks resulted from partial melting of an enriched lithospheric mantle. Here, we present the detailed documents to testify the existence of a new kind of high\|K igneous rocks in eastern Tibet.Our new 39 Ar/ 40 Ar age data (Wang et al., 1999) and published age data for high\|K rocks in eastern Tibet show two distinctive magmatic episodes: one between 42Ma and 24Ma, and the other since ca.16Ma. They correspond to two types of high\|K magmatism in eastern Tibet. We name the older and younger groups as types Ⅰ and Ⅱ, respectively.展开更多
The northern extension of the Semailophiolite in the UAE is dominated by tectonic mantle peridotites and gabbros. The peridotites are mostly harzburgites with little lherzolites, and contain various intermittentveins,...The northern extension of the Semailophiolite in the UAE is dominated by tectonic mantle peridotites and gabbros. The peridotites are mostly harzburgites with little lherzolites, and contain various intermittentveins, dikes and pods. These veins, dikes and pods can be divided into three rock categories: the ultramafic group that includes dunites, chromitites and pyroxenites, the granitic dikes, and carbonate veins. Occurrences of these bodies are explicit and ubiquitous, but their distribution throughout the sequence is not consistent. Pyroxenites, chromitites, and granites occur in the upper half of the sequence, but are more pronounced and dominant close to the transition zone. Dunites pods and carbonate veins can be found at different stratigraphic levels.展开更多
Our understanding of solid earth is from the surface, but the depth we can reach is very limited. So, most of the interpretations of geological processes and mechanisms extrapolated from all kinds of the surface pheno...Our understanding of solid earth is from the surface, but the depth we can reach is very limited. So, most of the interpretations of geological processes and mechanisms extrapolated from all kinds of the surface phenomena is greatly uncertain. Recently many researchers concentrate their efforts to the geological and geophysical studying of the deep processes of the solid earth. The International Lithosphere Project (ILP) started in 1981 now is also a frontier field. One of the concentrations of this project is the 3\|D structure, tectonic evolution and the dynamic models of lithosphere\|asthenosphere system (Li Xiaobo etc., 1997). The studying of the igneous rocks and bearing deep\|seated xenoliths, as one of the effective methods probing the structure and evolution of the lithosphere, plays a very important role in these aspects (Deng Jinfu et al., 1996; Lu Fengxiang, 1997).Commonly, magmas come to the surface in great speed and the covering lithosphere should be relatively thinner. For example, the thickness of the lithosphere in East China is about 60~80km in the era when the volcanoes erupted (Deng Jinfu et al. 1994). Recently, many deep\|seated xenoliths were found in several localities of southwest Tianshan (Han Baofu et al., 1998). But in Qinghai—Xizang plateau, “So far no any xenoliths of mantle rocks as peridotites, lherzolites and harzburgites and high pressure granulites were found (Deng Wanming et al., 1997)”.. But in the fieldwork of 1998 we find some deep\|seated xenoliths in Cenozoic basaltic rocks in Kangxiwa region, West Kunlun, China. This work is a part of the project “XinJiang DuShanZi—QuanShuiGou transect” managed by academician Xiao Xuchang.展开更多
适用于地幔岩石的矿物压力计有石榴石-斜方辉石压力计、石榴石-单斜辉石压力计、橄榄石-单斜辉石压力计、铬尖晶石压力计、二辉石压力计等有限几类。本文通过将这些压力计应用于岩石学相平衡实验数据,检验了其精确度。再将它们应用到天...适用于地幔岩石的矿物压力计有石榴石-斜方辉石压力计、石榴石-单斜辉石压力计、橄榄石-单斜辉石压力计、铬尖晶石压力计、二辉石压力计等有限几类。本文通过将这些压力计应用于岩石学相平衡实验数据,检验了其精确度。再将它们应用到天然地幔岩石样品,包括石榴石相二辉橄榄岩、尖晶石相二辉橄榄岩、石榴石-尖晶石过渡相二辉橄榄岩、含金刚石和石墨的地幔岩石,检验了其准确度。初步结论是,现有的石榴石-斜方辉石压力计(Nickel and Green,1985;Taylor,1998;Breyet al.,2008)质量相对最优,石榴石-单斜辉石压力计(Nimis and Taylor,2000;Simakov and Taylor,2000)次之。在应用这些压力计时,可配合二辉石温度计(Brey et al.,1990;Taylor,1998)或石榴石-橄榄石温度计(Wu and Zhao,2007),来同时估算平衡压力和温度。其余的压力计精确度和准确度都还很不够,需要更精确深入的实验研究来标定质量优良的压力计。展开更多
基金theNationalClimbingProgram(95 Pre .393 1 2 )andMLMRStrategicKeyProgram (95 0 110 3)
文摘Geological setting\;Jinding superlarge Pb\|Zn deposit lies in the Lanping basin between the Lancangjiang fracture zone and the Jinshajiang\|Ailaoshan fracture zone. The Lanping basin is a Meso\|Cenozoic rifting basin whose basement consists of the Paleozoic strata. Mesozoic paralic and continental sediments with a thickness of about 20000m deposited in the basin. In the Paleocene, gypsum\|salt\|bearing strata with a thickness of more than 1000m accumulated. In the Cenozoic, collision of the Indian plate with the Eurasian plate resulted in strong folding and napping and subsequent extensions in the Oligocene and Pliocene. The extensions were responsible for alkaline magmatic intrusion in the centre and alkaline magmatic extrusion in the east.Faulting is well developed. N\|S\|trending Bijiang fault with a length of 120km links with the Jinshajiang fracture zone in the north and with the Lancangjiang fracture zone in the south, controlling on the Cenozoic Lanping rifting basin and acting as passage\|way for ore fluids.
基金Project(10872219) supported by the National Natural Science Foundation of China
文摘The finite element method was used to solve fluid dynamic interaction problems between the crust and mantle of the Earth. To consider different mechanical behaviours, the lithosphere consisting of the crust and upper mantle was simulated as fluid-saturated porous rocks, while the upper aesthenospheric part of the mantle was simulated as viscous fluids. Since the whole lithosphere was computationally simulated, the dynamic interaction between the crust and the upper mantle was appropriately considered. In particular, the mixing of mantle fluids and crustal fluids was simulated in the corresponding computational model. The related computational simulation results from an example problem demonstrate that the mantle fluids can flow into the crust and mix with the crustal fluids due to the resulting convective flows in the crust-mantle system. Likewise, the crustal fluids can also flow into the upper mantle and mix with the mantle fluids. This kind of fluids mixing and exchange is very important to the better understanding of the governing processes that control the ore body formation and mineralization in the upper crust of the Earth.
文摘The well preserved eclogitic rocks of the Tso Morari dome in eastern Ladakh, northwest Himalaya, provide information relevant to the exhumation of high pressure/low temperature rocks, and the early stage of the Himalayan orogeny. The Tso Morari unit outcrops south of the Indus suture zone (Fig.1). The eclogitic dome is underlined on its eastern part by the Zildat normal fault where serpentinite lenses and partially hydrated peridotites are abundant. The close association of the high pressure rocks and serpentinites suggests a possible role of serpentinites in the exhumation of ultrahigh\|pressure rocks. To evaluate this possibility, geochemical analyses were carried out on the serpentinites closely associated with the Tso Morari eclogites.
文摘Reversions as receiver functions and ACH were performed using the teleseismic data acquired from the seismic array that were deployed across Tian Shan in Xinjiang in 1997\|1998 jointly by Sino\|French seismic crew.The results suggest the crustal shortening and thickening in the study area that are well expressed by the thickening in lower crust and the uplifting of Tian Shan in the collision between Euro\|Asian and Indian plates. Underthrusting in the intra\|continental collision model turns out to be asymmetrical, with the northward in the south much stronger than the southward in the north. The cause of the steepness of the southward underthrust is likely to rest on the strong extrusion. Going further deep, the curving end of the cold underthrusting zone may detach, penetrating its own way. The ongoing uplifting of Tian Shan is given birth mostly by the underthrusting on its south and the squeezing force from both sides. The underthrusting zone is composed of compact ancestral crystalline rocks. The thickness of the crust varys from 65km beneath the main body of Tian Shan to 41km beneath the Tarim and Zengar basins on sides with certain degree of thickening. The major faulting zones in the area go precipitously in the scope of crust, with those in the low\|velocity bodies closely associated to the activities of molten mantle materials and seismicity.
文摘 Recently, there is an urgent need in high pressure community for a pressure scale whose accuracy is comparable to the high precision of experimental data.One of the difficulties is the lack of an absolute scale,in particular at high temperature, to evaluate the EOS of standard materials.……
文摘Cenozoic high\|K igneous rocks are widely distributed in eastern Tibet. These rocks are exposed as flows, dykes and small intrusions along a narrow north\|south trending zone, which follows Tertiary fold belts and the Batang—Lijiang and Ailao Shan—Red River strike\|slip systems. Although several models were proposed to interpret their petrogenesis (Deng, 1989; Arnaud et al., 1991; Turner et al., 1996; Yin et al., 1995; Miller et al., 1999), their origin still remains hotly debated. Moreover, the published results were only focused on the high\|K igneous rocks resulted from partial melting of an enriched lithospheric mantle. Here, we present the detailed documents to testify the existence of a new kind of high\|K igneous rocks in eastern Tibet.Our new 39 Ar/ 40 Ar age data (Wang et al., 1999) and published age data for high\|K rocks in eastern Tibet show two distinctive magmatic episodes: one between 42Ma and 24Ma, and the other since ca.16Ma. They correspond to two types of high\|K magmatism in eastern Tibet. We name the older and younger groups as types Ⅰ and Ⅱ, respectively.
文摘The northern extension of the Semailophiolite in the UAE is dominated by tectonic mantle peridotites and gabbros. The peridotites are mostly harzburgites with little lherzolites, and contain various intermittentveins, dikes and pods. These veins, dikes and pods can be divided into three rock categories: the ultramafic group that includes dunites, chromitites and pyroxenites, the granitic dikes, and carbonate veins. Occurrences of these bodies are explicit and ubiquitous, but their distribution throughout the sequence is not consistent. Pyroxenites, chromitites, and granites occur in the upper half of the sequence, but are more pronounced and dominant close to the transition zone. Dunites pods and carbonate veins can be found at different stratigraphic levels.
文摘Our understanding of solid earth is from the surface, but the depth we can reach is very limited. So, most of the interpretations of geological processes and mechanisms extrapolated from all kinds of the surface phenomena is greatly uncertain. Recently many researchers concentrate their efforts to the geological and geophysical studying of the deep processes of the solid earth. The International Lithosphere Project (ILP) started in 1981 now is also a frontier field. One of the concentrations of this project is the 3\|D structure, tectonic evolution and the dynamic models of lithosphere\|asthenosphere system (Li Xiaobo etc., 1997). The studying of the igneous rocks and bearing deep\|seated xenoliths, as one of the effective methods probing the structure and evolution of the lithosphere, plays a very important role in these aspects (Deng Jinfu et al., 1996; Lu Fengxiang, 1997).Commonly, magmas come to the surface in great speed and the covering lithosphere should be relatively thinner. For example, the thickness of the lithosphere in East China is about 60~80km in the era when the volcanoes erupted (Deng Jinfu et al. 1994). Recently, many deep\|seated xenoliths were found in several localities of southwest Tianshan (Han Baofu et al., 1998). But in Qinghai—Xizang plateau, “So far no any xenoliths of mantle rocks as peridotites, lherzolites and harzburgites and high pressure granulites were found (Deng Wanming et al., 1997)”.. But in the fieldwork of 1998 we find some deep\|seated xenoliths in Cenozoic basaltic rocks in Kangxiwa region, West Kunlun, China. This work is a part of the project “XinJiang DuShanZi—QuanShuiGou transect” managed by academician Xiao Xuchang.
文摘适用于地幔岩石的矿物压力计有石榴石-斜方辉石压力计、石榴石-单斜辉石压力计、橄榄石-单斜辉石压力计、铬尖晶石压力计、二辉石压力计等有限几类。本文通过将这些压力计应用于岩石学相平衡实验数据,检验了其精确度。再将它们应用到天然地幔岩石样品,包括石榴石相二辉橄榄岩、尖晶石相二辉橄榄岩、石榴石-尖晶石过渡相二辉橄榄岩、含金刚石和石墨的地幔岩石,检验了其准确度。初步结论是,现有的石榴石-斜方辉石压力计(Nickel and Green,1985;Taylor,1998;Breyet al.,2008)质量相对最优,石榴石-单斜辉石压力计(Nimis and Taylor,2000;Simakov and Taylor,2000)次之。在应用这些压力计时,可配合二辉石温度计(Brey et al.,1990;Taylor,1998)或石榴石-橄榄石温度计(Wu and Zhao,2007),来同时估算平衡压力和温度。其余的压力计精确度和准确度都还很不够,需要更精确深入的实验研究来标定质量优良的压力计。