Electrochemical water splitting has long been considered an effective energy conversion technology for trans-ferring intermittent renewable electricity into hydrogen fuel,and the exploration of cost-effective and high...Electrochemical water splitting has long been considered an effective energy conversion technology for trans-ferring intermittent renewable electricity into hydrogen fuel,and the exploration of cost-effective and high-performance electrocatalysts is crucial in making electrolyzed water technology commercially viable.Cobalt phosphide(Co-P)has emerged as a catalyst of high potential owing to its high catalytic activity and durability in water splitting.This paper systematically reviews the latest advances in the development of Co-P-based materials for use in water splitting.The essential effects of P in enhancing the catalytic performance of the hydrogen evolution reaction and oxygen evolution reaction are first outlined.Then,versatile synthesis techniques for Co-P electrocatalysts are summarized,followed by advanced strategies to enhance the electrocatalytic performance of Co-P materials,including heteroatom doping,composite construction,integration with well-conductive sub-strates,and structure control from the viewpoint of experiment.Along with these optimization strategies,the understanding of the inherent mechanism of enhanced catalytic performance is also discussed.Finally,some existing challenges in the development of highly active and stable Co-P-based materials are clarified,and pro-spective directions for prompting the wide commercialization of water electrolysis technology are proposed.展开更多
For the deep understanding on combustion of ammonia/diesel,this study develops a reduced mechanism of ammonia/diesel with 227 species and 937 reactions.The sub-mechanism on ammonia/interactions of N-based and C-based ...For the deep understanding on combustion of ammonia/diesel,this study develops a reduced mechanism of ammonia/diesel with 227 species and 937 reactions.The sub-mechanism on ammonia/interactions of N-based and C-based species(N—C)/NOx is optimized using the Non-dominated Sorting Genetic Algorithm II(NSGA-II)with 200 generations.The optimized mechanism(named as 937b)is validated against combustion characteristics of ammonia/methane(which is used to examine the accuracy of N—C interactions)and ammonia/diesel blends.The ignition delay times(IDTs),the laminar flame speeds and most of key intermediate species during the combustion of ammonia/methane blends can be accurately simulated by 937b under a wide range of conditions.As for ammonia/diesel blends with various diesel energy fractions,reasonable predictions on the IDTs under pressures from 1.0 MPa to5.0 MPa as well as the laminar flame speeds are also achieved by 937b.In particular,with regard to the IDT simulations of ammonia/diesel blends,937b makes progress in both aspects of overall accuracy and computational efficiency,compared to a detailed ammonia/diesel mechanism.Further kinetic analysis reveals that the reaction pathway of ammonia during the combustion of ammonia/diesel blend mainly differs in the tendencies of oxygen additions to NH_2 and NH with different equivalence ratios.展开更多
The interfacial structure has an important effect on the mechanical properties and safety of the energetic material.In this work,a mesostructure model reflecting the real internal structure of PBX is established throu...The interfacial structure has an important effect on the mechanical properties and safety of the energetic material.In this work,a mesostructure model reflecting the real internal structure of PBX is established through image digital modeling and vectorization processing technology.The microscopic molecular structure model of PBX is constructed by molecular dynamics,and the interface bonding energy is calculated and transferred to the mesostructure model.Numerical simulations are used to study the influence of the interface roughness on the dynamic compression and impact ignition response of PBX,and to regulate and optimize the mechanical properties and safety of the explosive to obtain the optimal design of the surface roughness of the explosive crystal.The results show that the critical hot spot density of PBX ignition under impact loading is 0.68 mm^(-2).The improvement of crystal surface roughness can improve the mechanical properties of materials,but at the same time it can improve the impact ignition sensitivity and reduce the safety of materials.The optimal friction coefficient range for the crystal surface that satisfies both the mechanical properties and safety of PBX is 0.06-0.12.This work can provide a reference basis for the formulation design and production processing of energetic materials.展开更多
Aptamers as a kind of biological recognition element have shown great potential in monitoring and the rapid quantification of organophosphorus pesticides(OPPs). However, molecules of OPPs are structurally similar and ...Aptamers as a kind of biological recognition element have shown great potential in monitoring and the rapid quantification of organophosphorus pesticides(OPPs). However, molecules of OPPs are structurally similar and original aptamers selected by systematic evolution of ligands by exponential enrichment are usually long-chain bases, which hamper the further application under OPPs-aptamer recognition. The aim of the research was to develop a new strategy to design oligonucleotide sequences for binding OPPs by combination of experimental and molecular modeling methods. 3D models of aptamers binding OPPs were constructed, and binding energy and the most probable binding site for the OPPs were then determined by molecular docking, and the binding sites were further confirmed by the results of 2-AP replaced experiments. Based on the docking results, a new aptamer for detection 4 representative OPPs with only 29 bases was designed by reasonable truncation and mutation of the reported aptamer(named S4-29). The interaction between this new aptamer and OPPs were analyzed by molecular docking, microscale thermophoresis, circular dichroism and fluorometric analysis. The results revealed that the new aptamer exhibit more superior recognition performance to OPPs, which can be promote the monitoring ability of OPPs contaminations in food.展开更多
Based on multidisciplinary design optimization(MDO),a new design method is put forward for hydraulic shift mechanism of heavy-duty vehicle automated manual transmission(AMT).Taking a shift cylinder for example,the...Based on multidisciplinary design optimization(MDO),a new design method is put forward for hydraulic shift mechanism of heavy-duty vehicle automated manual transmission(AMT).Taking a shift cylinder for example,the collaborative optimization(CO)method for the design problem of a cylinder is devided into one system level design optimization problem and three subsystem level design optimization problems.The system level is an economic model and the subsystem level is mechanics,kinetics,and a reliability model.Application of the multidisciplinary design optimization software iSIGHT modeling and solving,optimal solution of the shifting cylinder CO model is obtained.According to the optimal solution,oil cylinders are machined out and installed on the gearbox of an AMT system for the bench cycle shift test.The results show that the output force and action speed of the optimized mechanism can meet requirements very well.In addition,the optimized mechanism has a better performance compared to the structure of the traditional design method,which indicates that the CO method can optimize the design of hydraulic transmission.展开更多
As formation mechanisms of plugging zone and criteria for fracture plugging remain unclear,plugging experiments and methods testing granular material mechanical properties are used to study the formation process of th...As formation mechanisms of plugging zone and criteria for fracture plugging remain unclear,plugging experiments and methods testing granular material mechanical properties are used to study the formation process of the plugging zone in fractured formations,analyze composition and ratios of different sizes of particles in the plugging zone,and reveal the essence and driving energy of the formation and damage of the plugging zone.New criteria for selecting lost circulation materials are proposed.The research results show that the formation of the plugging zone has undergone a process from inertial flow,elastic flow,to quasi-static flow.The plugging zone is composed of fracture mouth plugging particles,bridging particles and filling particles,and the proportion of the three types of particles is an important basis for designing drilling fluid loss control formula.The essence of the construction of the plugging zone is non-equilibrium Jamming phase transition.The response of the plugging zone particle system to pressure is driven by entropy force;the greater the entropy,the more stable the plugging zone.Lost circulation control formula optimized according to the new criteria has better plugging effect than the formula made according to conventional plugging rules and effectively improves the pressure-bearing capacity of the plugging zone.The research results provide a theoretical and technical basis for the lost circulation control of fractured formations.展开更多
The high-energy consumption and high construction density of 5G base stations have greatly increased the demand for backup energy storage batteries.To maximize overall benefits for the investors and operators of base ...The high-energy consumption and high construction density of 5G base stations have greatly increased the demand for backup energy storage batteries.To maximize overall benefits for the investors and operators of base station energy storage,we proposed a bi-level optimization model for the operation of the energy storage,and the planning of 5G base stations considering the sleep mechanism.A multi-base station cooperative system composed of 5G acer stations was considered as the research object,and the outer goal was to maximize the net profit over the complete life cycle of the energy storage.Furthermore,the power and capacity of the energy storage configuration were optimized.The inner goal included the sleep mechanism of the base station,and the optimization of the energy storage charging and discharging strategy,for minimizing the daily electricity expenditure of the 5G base station system.Additionally,genetic algorithm and mixed integer programming were used to solve the bi-level optimization model,analyze the numerical example test comparison of the three types of batteries and the net income of the configuration,and finally verify the validity of the model.Furthermore,the sleep mechanism,the charging and discharging strategy for energy consumption,and the economic benefits for the operators were investigated to provide reference for the 5G base station energy storage configuration.展开更多
Water decoupling charge blasting excels in rock breaking,relying on its uniform pressure transmission and low energy dissipation.The water decoupling coefficients can adjust the contributions of the stress wave and qu...Water decoupling charge blasting excels in rock breaking,relying on its uniform pressure transmission and low energy dissipation.The water decoupling coefficients can adjust the contributions of the stress wave and quasi-static pressure.However,the quantitative relationship between the two contributions is unclear,and it is difficult to provide reasonable theoretical support for the design of water decoupling blasting.In this study,a theoretical model of blasting fracturing partitioning is established.The mechanical mechanism and determination method of the optimal decoupling coefficient are obtained.The reliability is verified through model experiments and a field test.The results show that with the increasing of decoupling coefficient,the rock breaking ability of blasting dynamic action decreases,while quasi-static action increases and then decreases.The ability of quasi-static action to wedge into cracks changes due to the spatial adjustment of the blast hole and crushed zone.The quasi-static action plays a leading role in the fracturing range,determining an optimal decoupling coefficient.The optimal water decoupling coefficient is not a fixed value,which can be obtained by the proposed theoretical model.Compared with the theoretical results,the maximum error in the model experiment results is 8.03%,and the error in the field test result is 3.04%.展开更多
International thermonuclear experimental reactor (ITER) edge localized mode (ELM) coils are used to mitigate or suppress ELMs. The location of the coils in the vacuum vessel and behind the blankets exposes them to...International thermonuclear experimental reactor (ITER) edge localized mode (ELM) coils are used to mitigate or suppress ELMs. The location of the coils in the vacuum vessel and behind the blankets exposes them to high radiation levels and high temperatures. The feeders provide the power and cooling water for ELM coils. They are located in the chinmey ports and experience lower radiation and temperature levels. These coils and feeders work in a high magnetic field environment and are subjected to alternating electromagnetic force due to the interaction between high magnetic field and alternating current (AC) current in the coils. They are also subjected to thermal stresses due to thermal expansion. Using the ITER upper ELM coil and feeder as an example, mechanical analyses are performed to verify and optimize the updated design to enhance their structural performance. The results show that the conductor, jacket and bracket can meet the static, fatigue and crack threshold criteria. The optimization indicates that adding chamfers to the bracket can reduce the high stress of the bracket, and removing two rails can reduce the peak reaction force on the two rails arising from thermal expansion.展开更多
Pump chambers, normally used as dominant structures in mining engineering to insure the safety and production of un-derground coal mines, become generally deformed under conditions of deep mining. Given the geology an...Pump chambers, normally used as dominant structures in mining engineering to insure the safety and production of un-derground coal mines, become generally deformed under conditions of deep mining. Given the geology and engineering condition of Qishan Coal Mine in Xuzhou, the failure characteristics of pump chambers at the –1000 m level show that the main cause can be attributed to the spatial effect induced by intersectional chambers, where one pump is constructed per well. We developed an opti-mized design of the pump room, in which the pump wells in the traditional design are integrated into one compounding well. We suggest that the new design can limit the spatial effect of intersectional chambers during construction given our relevant numerical simulation. The new design is able to simplify the structure of the pump chamber and reduce the amount of excavation required. Based on a bolt-mesh-anchor with a rigid gap coupling supporting technology, the stability of pump chamber can be improved greatly.展开更多
Through the analysis of the reservoir connection relationship and the water-cut rising rules after water breakthrough in the highly volatile oil AKPO oilfield, a new model of water-cut rising was established, and the ...Through the analysis of the reservoir connection relationship and the water-cut rising rules after water breakthrough in the highly volatile oil AKPO oilfield, a new model of water-cut rising was established, and the timing and strategy of water injection were put forward. The water-cut rising shapes of producers after water breakthrough can be divided into three types, and their water-cut rising mechanism is mainly controlled by reservoir connectivity. For the producers which directly connect with injectors in the single-phase sand body of the single-phase channel or lobe with good reservoir connectivity, the water-cut rising curve is "sub-convex". For the producers which connect with injectors through sand bodies developed in multi-phases with good inner sand connectivity but poorer physical property and connectivity at the overlapping parts of sands, the response to water injection is slow and the water-cut rising curve is "sub-concave". For the producers which connect with injectors through multi-phase sand bodies with reservoir physical properties, connectivity in between the former two and characteristics of both direct connection and overlapping connection, the response to water injection is slightly slower and the water-cut rising curve is "sub-S". Based on ratio relationship of oil and water relative permeability, a new model of water cut rising was established. Through the fitting analysis of actual production data, the optimal timing and corresponding technology for water injection after water breakthrough were put forward. Composite channel and lobe reservoirs can adopt water injection strategies concentrating on improving the vertical sweep efficiency and areal sweep efficiency respectively. This technology has worked well in the AKPO oilfield and can guide the development of similar oilfields.展开更多
Deoxyribonucleic acid( DNA) microarray gene expression data has been widely utilized in the field of functional genomics,since it is helpful to study cancer,cells,tissues,organisms etc.But the sample sizes are relat...Deoxyribonucleic acid( DNA) microarray gene expression data has been widely utilized in the field of functional genomics,since it is helpful to study cancer,cells,tissues,organisms etc.But the sample sizes are relatively small compared to the number of genes,so feature selection is very necessary to reduce complexity and increase the classification accuracy of samples. In this paper,a completely newimprovement over particle swarm optimization( PSO) based on fluid mechanics is proposed for the feature selection. This newimprovement simulates the spontaneous process of the air from high pressure to lowpressure,therefore it allows for a search through all possible solution spaces and prevents particles from getting trapped in a local optimum. The experiment shows that,this newimproved algorithm had an elaborate feature simplification which achieved a very precise and significant accuracy in the classification of 8 among the 11 datasets,and it is much better in comparison with other methods for feature selection.展开更多
Modeling and optimizing long-term energy systems can provide solutions to various energy and environmental policies involving public-interest issues.The conventional optimization of long-term energy system models focu...Modeling and optimizing long-term energy systems can provide solutions to various energy and environmental policies involving public-interest issues.The conventional optimization of long-term energy system models focuses on a single economic goal.However,the increasingly complex demands of energy systems necessitate the comprehensive consideration of multiple dimensional objectives,such as environmental,social,and energy security.Therefore,a multi-objective optimization of long-term energy system models has been developed.Herein,studies pertaining to the multi-objective optimization of long-term energy system models are summarized;the optimization objectives of long-term energy system models are classified into economic,environmental,social,and energy security aspects;and the multi-objective optimization methods are classified and explained based on the preferential expression of decision makers.Finally,the key development direction of the multi-objective optimization of energy system models is discussed.展开更多
A larger number of uncertain factors in energy systems influence their evolution.Owing to the complexity of energy system modeling,incorporating uncertainty analysis to energy system modeling is essential for future e...A larger number of uncertain factors in energy systems influence their evolution.Owing to the complexity of energy system modeling,incorporating uncertainty analysis to energy system modeling is essential for future energy system planning and resource allocation.This study focusses on long-term energy system optimization model.The important uncertain parameters in the model are analyzed and divided into policy,economic,and technical factors.This study specifically addresses the challenges related to carbon emission reduction and energy transition.It involves collecting and organizing relevant research on uncertainty analysis of long-term energy systems.Various energy system uncertainty modeling methods and their applications from the literature are summarized in this review.Finally,important uncertainty factors and uncertainty modeling methods for long-term energy system modeling are discussed,and future research directions are proposed.展开更多
Aiming at the problems in current cam profile optimization processes, such as simple dynamics models, limited geometric accuracy and low design automatization level, a new dynamic optimization mode is put forward. Bas...Aiming at the problems in current cam profile optimization processes, such as simple dynamics models, limited geometric accuracy and low design automatization level, a new dynamic optimization mode is put forward. Based on the parameterization modeling technique of MSC. ADAMS platform, the different steps in current mode are reorganized, thus obtaining an upgraded mode called the "parameterized-prototype-based cam profile dynamic optimization mode". A parameterized prototype(PP) of valve mechanism is constructed in the course of dynamic optimization for cam profiles. Practically, by utilizing PP and considering the flexibility of the parts in valve mechanism, geometric accuracy and design automatization are improved.展开更多
There has been increasing demand for high-energy density and longcycle life rechargeable batteries to satisfy the ever-growing requirements for nextgeneration energy storage systems.Among all available candidates,dual...There has been increasing demand for high-energy density and longcycle life rechargeable batteries to satisfy the ever-growing requirements for nextgeneration energy storage systems.Among all available candidates,dual-ion batteries(DIBs)have drawn tremendous attention in the past few years from both academic and industrial battery communities because of their fascinating advantages of high working voltage,excellent safety,and environmental friendliness.However,the dynamic imbalance between the electrodes and the mismatch of traditional electrolyte systems remain elusive.To fully employ the advantages of DIBs,the overall optimization of anode materials,cathode materials,and compatible electrolyte systems is urgently needed.Here,we review the development history and the reaction mechanisms involved in DIBs.Afterward,the optimization strategies toward DIB materials and electrolytes are highlighted.In addition,their energy-related applications are also provided.Lastly,the research challenges and possible development directions of DIBs are outlined.展开更多
Though secondary aqueous Zn ion batteries(AZIBs)have been received broad concern in recent years,the development of suitable cathode materials of AZIBs is still a big challenge.The MnO_(2) has been deemed as one of mo...Though secondary aqueous Zn ion batteries(AZIBs)have been received broad concern in recent years,the development of suitable cathode materials of AZIBs is still a big challenge.The MnO_(2) has been deemed as one of most hopeful cathode materials of AZIBs on account of some extraordinary merits,such as richly natural resources,low toxicity,high discharge potential,and large theoretical capacity.However,the crystal structure diversity of MnO_(2) results in an obvious various of charge storage mechanisms,which can cause great differences in electrochemical performance.Furthermore,several challenges,including intrinsic poor conductivity,dissolution of manganese and sluggish ion transport dynamics should be conquered before real practice.This work focuses on the reaction mechanisms and recent progress of MnO_(2)-based materials of AZIBs.In this review,a detailed review of the reaction mechanisms and optimal ways for enhancing electrochemical performance for MnO_(2)-based materials is proposed.At last,a number of viewpoints on challenges,future development direction,and foreground of MnO_(2)-based materials of aqueous zinc ions batteries are put forward.This review clarifies reaction mechanism of MnO_(2)-based materials of AZIBs,and offers a new perspective for the future invention in MnO_(2)-based cathode materials,thus accelerate the extensive development and commercialization practice of aqueous zinc ions batteries.展开更多
The stress concentration and failure at chamber intersections in coal mine are intense,especially in deepburied,super-large section conditions.In this paper,the plastic radius of super-large section chamber under uneq...The stress concentration and failure at chamber intersections in coal mine are intense,especially in deepburied,super-large section conditions.In this paper,the plastic radius of super-large section chamber under unequal pressure was corrected on the basis of the size effect.Then,stress and failure evolution of intersections under different crossing angles and equivalent angular bisectors were revealed.Furthermore,2 trajectory curves of failure and stress were analytically expressed,which divided the intersection into 5 influencing zones in the light of stress superposition degree.After determining instability trigger point and instability path,instability energy criterion of intersection can be obtained as K>1,which means that the external energy is greater than the sum of energy consumed by surrounding rock instability and supporting structure failure.Taking coal-gangue separation system of Longgu Coal Mine as example,it was found that there was instability risk under original parameters.For long-term stability,an optimization design method was proposed by considering safety factor,and optimal support scheme was obtained.Field monitoring showed intersections deformations were relatively small with the maximum of 125 mm,which verified the rationality of theoretical analysis.This study provides guidance for the stability control of the intersections under the same or similar conditions.展开更多
Our differential and grading toothed roll crusher blends the advantages of a toothed roll crusher and a jaw crusher and possesses characteristics of great crushing,high breaking efficiency,multi-sieving and has,for th...Our differential and grading toothed roll crusher blends the advantages of a toothed roll crusher and a jaw crusher and possesses characteristics of great crushing,high breaking efficiency,multi-sieving and has,for the moment,made up for the short- comings of the toothed roll crusher.The moving jaw of the crusher is a crank-rocker mechanism.For optimizing the dynamic per- formance and improving the cracking capability of the crusher,a mathematical model was established to optimize the transmission angleγand to minimize the travel characteristic value m of the moving jaw.Genetic algorithm is used to optimize the crusher crank-rocker mechanism for multi-object design and an optimum result is obtained.According to the implementation,it is shown that the performance of the crusher and the cracking capability of the moving jaw have been improved.展开更多
An improved adaptive particle swarm optimization(IAPSO)algorithm is presented for solving the minimum makespan problem of job shop scheduling problem(JSP).Inspired by hormone modulation mechanism,an adaptive hormonal ...An improved adaptive particle swarm optimization(IAPSO)algorithm is presented for solving the minimum makespan problem of job shop scheduling problem(JSP).Inspired by hormone modulation mechanism,an adaptive hormonal factor(HF),composed of an adaptive local hormonal factor(H l)and an adaptive global hormonal factor(H g),is devised to strengthen the information connection between particles.Using HF,each particle of the swarm can adjust its position self-adaptively to avoid premature phenomena and reach better solution.The computational results validate the effectiveness and stability of the proposed IAPSO,which can not only find optimal or close-to-optimal solutions but also obtain both better and more stability results than the existing particle swarm optimization(PSO)algorithms.展开更多
基金the National Natural Science Foundation of China(21962008)Yunnan Province Excellent Youth Fund Project(202001AW070005)+1 种基金Candidate Talents Training Fund of Yunnan Province(2017PY269SQ,2018HB007)Yunnan Ten Thousand Talents Plan Young&Elite Talents Project(YNWR-QNBJ-2018-346).
文摘Electrochemical water splitting has long been considered an effective energy conversion technology for trans-ferring intermittent renewable electricity into hydrogen fuel,and the exploration of cost-effective and high-performance electrocatalysts is crucial in making electrolyzed water technology commercially viable.Cobalt phosphide(Co-P)has emerged as a catalyst of high potential owing to its high catalytic activity and durability in water splitting.This paper systematically reviews the latest advances in the development of Co-P-based materials for use in water splitting.The essential effects of P in enhancing the catalytic performance of the hydrogen evolution reaction and oxygen evolution reaction are first outlined.Then,versatile synthesis techniques for Co-P electrocatalysts are summarized,followed by advanced strategies to enhance the electrocatalytic performance of Co-P materials,including heteroatom doping,composite construction,integration with well-conductive sub-strates,and structure control from the viewpoint of experiment.Along with these optimization strategies,the understanding of the inherent mechanism of enhanced catalytic performance is also discussed.Finally,some existing challenges in the development of highly active and stable Co-P-based materials are clarified,and pro-spective directions for prompting the wide commercialization of water electrolysis technology are proposed.
基金the National Natural Science Foundation of China(project code:52202470)Jilin Province Natural Science Foundation(project codes:20220101205JC,20220101212JC)+2 种基金Jilin Province Specific Project of Industrial Technology Research&Development(project code:2020C025-2)2021 Interdisciplinary Integration and Innovation Project of Jilin University(project code:XJRCYB07)Free Exploration Project of Changsha Automotive Innovation Research Institute of Jilin University(project code:CAIRIZT20220202)。
文摘For the deep understanding on combustion of ammonia/diesel,this study develops a reduced mechanism of ammonia/diesel with 227 species and 937 reactions.The sub-mechanism on ammonia/interactions of N-based and C-based species(N—C)/NOx is optimized using the Non-dominated Sorting Genetic Algorithm II(NSGA-II)with 200 generations.The optimized mechanism(named as 937b)is validated against combustion characteristics of ammonia/methane(which is used to examine the accuracy of N—C interactions)and ammonia/diesel blends.The ignition delay times(IDTs),the laminar flame speeds and most of key intermediate species during the combustion of ammonia/methane blends can be accurately simulated by 937b under a wide range of conditions.As for ammonia/diesel blends with various diesel energy fractions,reasonable predictions on the IDTs under pressures from 1.0 MPa to5.0 MPa as well as the laminar flame speeds are also achieved by 937b.In particular,with regard to the IDT simulations of ammonia/diesel blends,937b makes progress in both aspects of overall accuracy and computational efficiency,compared to a detailed ammonia/diesel mechanism.Further kinetic analysis reveals that the reaction pathway of ammonia during the combustion of ammonia/diesel blend mainly differs in the tendencies of oxygen additions to NH_2 and NH with different equivalence ratios.
基金National Natural Science Foundation of China(Grant No.U22B20131)General Program of National Nature Science Foundation of China(Grant No.12202060)for supporting this project。
文摘The interfacial structure has an important effect on the mechanical properties and safety of the energetic material.In this work,a mesostructure model reflecting the real internal structure of PBX is established through image digital modeling and vectorization processing technology.The microscopic molecular structure model of PBX is constructed by molecular dynamics,and the interface bonding energy is calculated and transferred to the mesostructure model.Numerical simulations are used to study the influence of the interface roughness on the dynamic compression and impact ignition response of PBX,and to regulate and optimize the mechanical properties and safety of the explosive to obtain the optimal design of the surface roughness of the explosive crystal.The results show that the critical hot spot density of PBX ignition under impact loading is 0.68 mm^(-2).The improvement of crystal surface roughness can improve the mechanical properties of materials,but at the same time it can improve the impact ignition sensitivity and reduce the safety of materials.The optimal friction coefficient range for the crystal surface that satisfies both the mechanical properties and safety of PBX is 0.06-0.12.This work can provide a reference basis for the formulation design and production processing of energetic materials.
基金supported by the National Natural Science Foundation of China (31801647)Sichuan Science and Technology Program (2018JY0194,2020YFN0153,2020YFN0151)。
文摘Aptamers as a kind of biological recognition element have shown great potential in monitoring and the rapid quantification of organophosphorus pesticides(OPPs). However, molecules of OPPs are structurally similar and original aptamers selected by systematic evolution of ligands by exponential enrichment are usually long-chain bases, which hamper the further application under OPPs-aptamer recognition. The aim of the research was to develop a new strategy to design oligonucleotide sequences for binding OPPs by combination of experimental and molecular modeling methods. 3D models of aptamers binding OPPs were constructed, and binding energy and the most probable binding site for the OPPs were then determined by molecular docking, and the binding sites were further confirmed by the results of 2-AP replaced experiments. Based on the docking results, a new aptamer for detection 4 representative OPPs with only 29 bases was designed by reasonable truncation and mutation of the reported aptamer(named S4-29). The interaction between this new aptamer and OPPs were analyzed by molecular docking, microscale thermophoresis, circular dichroism and fluorometric analysis. The results revealed that the new aptamer exhibit more superior recognition performance to OPPs, which can be promote the monitoring ability of OPPs contaminations in food.
基金Supported by the National High Technology Research and Development Program of China(863 Program)(2011AA11A223)
文摘Based on multidisciplinary design optimization(MDO),a new design method is put forward for hydraulic shift mechanism of heavy-duty vehicle automated manual transmission(AMT).Taking a shift cylinder for example,the collaborative optimization(CO)method for the design problem of a cylinder is devided into one system level design optimization problem and three subsystem level design optimization problems.The system level is an economic model and the subsystem level is mechanics,kinetics,and a reliability model.Application of the multidisciplinary design optimization software iSIGHT modeling and solving,optimal solution of the shifting cylinder CO model is obtained.According to the optimal solution,oil cylinders are machined out and installed on the gearbox of an AMT system for the bench cycle shift test.The results show that the output force and action speed of the optimized mechanism can meet requirements very well.In addition,the optimized mechanism has a better performance compared to the structure of the traditional design method,which indicates that the CO method can optimize the design of hydraulic transmission.
基金Supported by National Natural Science Foundation of China(51991361,52074327)Major Engineering Technology Field Test Project of CNPC(2020F-45)。
文摘As formation mechanisms of plugging zone and criteria for fracture plugging remain unclear,plugging experiments and methods testing granular material mechanical properties are used to study the formation process of the plugging zone in fractured formations,analyze composition and ratios of different sizes of particles in the plugging zone,and reveal the essence and driving energy of the formation and damage of the plugging zone.New criteria for selecting lost circulation materials are proposed.The research results show that the formation of the plugging zone has undergone a process from inertial flow,elastic flow,to quasi-static flow.The plugging zone is composed of fracture mouth plugging particles,bridging particles and filling particles,and the proportion of the three types of particles is an important basis for designing drilling fluid loss control formula.The essence of the construction of the plugging zone is non-equilibrium Jamming phase transition.The response of the plugging zone particle system to pressure is driven by entropy force;the greater the entropy,the more stable the plugging zone.Lost circulation control formula optimized according to the new criteria has better plugging effect than the formula made according to conventional plugging rules and effectively improves the pressure-bearing capacity of the plugging zone.The research results provide a theoretical and technical basis for the lost circulation control of fractured formations.
基金supported by the State Grid Science and Technology Project(KJ21-1-56).
文摘The high-energy consumption and high construction density of 5G base stations have greatly increased the demand for backup energy storage batteries.To maximize overall benefits for the investors and operators of base station energy storage,we proposed a bi-level optimization model for the operation of the energy storage,and the planning of 5G base stations considering the sleep mechanism.A multi-base station cooperative system composed of 5G acer stations was considered as the research object,and the outer goal was to maximize the net profit over the complete life cycle of the energy storage.Furthermore,the power and capacity of the energy storage configuration were optimized.The inner goal included the sleep mechanism of the base station,and the optimization of the energy storage charging and discharging strategy,for minimizing the daily electricity expenditure of the 5G base station system.Additionally,genetic algorithm and mixed integer programming were used to solve the bi-level optimization model,analyze the numerical example test comparison of the three types of batteries and the net income of the configuration,and finally verify the validity of the model.Furthermore,the sleep mechanism,the charging and discharging strategy for energy consumption,and the economic benefits for the operators were investigated to provide reference for the 5G base station energy storage configuration.
基金funded by the National Natural Science Foundation of China(No.42372331)the Henan Excellent Youth Science Fund Project(No.242300421145)the Colleges and Universities Youth and Innovation Science and Technology Support Plan of Shandong Province(No.2021KJ024).
文摘Water decoupling charge blasting excels in rock breaking,relying on its uniform pressure transmission and low energy dissipation.The water decoupling coefficients can adjust the contributions of the stress wave and quasi-static pressure.However,the quantitative relationship between the two contributions is unclear,and it is difficult to provide reasonable theoretical support for the design of water decoupling blasting.In this study,a theoretical model of blasting fracturing partitioning is established.The mechanical mechanism and determination method of the optimal decoupling coefficient are obtained.The reliability is verified through model experiments and a field test.The results show that with the increasing of decoupling coefficient,the rock breaking ability of blasting dynamic action decreases,while quasi-static action increases and then decreases.The ability of quasi-static action to wedge into cracks changes due to the spatial adjustment of the blast hole and crushed zone.The quasi-static action plays a leading role in the fracturing range,determining an optimal decoupling coefficient.The optimal water decoupling coefficient is not a fixed value,which can be obtained by the proposed theoretical model.Compared with the theoretical results,the maximum error in the model experiment results is 8.03%,and the error in the field test result is 3.04%.
文摘International thermonuclear experimental reactor (ITER) edge localized mode (ELM) coils are used to mitigate or suppress ELMs. The location of the coils in the vacuum vessel and behind the blankets exposes them to high radiation levels and high temperatures. The feeders provide the power and cooling water for ELM coils. They are located in the chinmey ports and experience lower radiation and temperature levels. These coils and feeders work in a high magnetic field environment and are subjected to alternating electromagnetic force due to the interaction between high magnetic field and alternating current (AC) current in the coils. They are also subjected to thermal stresses due to thermal expansion. Using the ITER upper ELM coil and feeder as an example, mechanical analyses are performed to verify and optimize the updated design to enhance their structural performance. The results show that the conductor, jacket and bracket can meet the static, fatigue and crack threshold criteria. The optimization indicates that adding chamfers to the bracket can reduce the high stress of the bracket, and removing two rails can reduce the peak reaction force on the two rails arising from thermal expansion.
基金supported by the Major Project of the National Basic Research Program of China (No2006CB202200)the Program for New Century Excellent Talents in Uni-versity (NoNCET07-0800)the Special Fund for Basic Research and Operating Expenses of the China University of Mining & Technology, Beijing and the Academician workstation in enterprise of Jiangsu Province (No.BM2009563)
文摘Pump chambers, normally used as dominant structures in mining engineering to insure the safety and production of un-derground coal mines, become generally deformed under conditions of deep mining. Given the geology and engineering condition of Qishan Coal Mine in Xuzhou, the failure characteristics of pump chambers at the –1000 m level show that the main cause can be attributed to the spatial effect induced by intersectional chambers, where one pump is constructed per well. We developed an opti-mized design of the pump room, in which the pump wells in the traditional design are integrated into one compounding well. We suggest that the new design can limit the spatial effect of intersectional chambers during construction given our relevant numerical simulation. The new design is able to simplify the structure of the pump chamber and reduce the amount of excavation required. Based on a bolt-mesh-anchor with a rigid gap coupling supporting technology, the stability of pump chamber can be improved greatly.
基金Supported by the China National Science and Technology Major Project(2011ZX05030-005)
文摘Through the analysis of the reservoir connection relationship and the water-cut rising rules after water breakthrough in the highly volatile oil AKPO oilfield, a new model of water-cut rising was established, and the timing and strategy of water injection were put forward. The water-cut rising shapes of producers after water breakthrough can be divided into three types, and their water-cut rising mechanism is mainly controlled by reservoir connectivity. For the producers which directly connect with injectors in the single-phase sand body of the single-phase channel or lobe with good reservoir connectivity, the water-cut rising curve is "sub-convex". For the producers which connect with injectors through sand bodies developed in multi-phases with good inner sand connectivity but poorer physical property and connectivity at the overlapping parts of sands, the response to water injection is slow and the water-cut rising curve is "sub-concave". For the producers which connect with injectors through multi-phase sand bodies with reservoir physical properties, connectivity in between the former two and characteristics of both direct connection and overlapping connection, the response to water injection is slightly slower and the water-cut rising curve is "sub-S". Based on ratio relationship of oil and water relative permeability, a new model of water cut rising was established. Through the fitting analysis of actual production data, the optimal timing and corresponding technology for water injection after water breakthrough were put forward. Composite channel and lobe reservoirs can adopt water injection strategies concentrating on improving the vertical sweep efficiency and areal sweep efficiency respectively. This technology has worked well in the AKPO oilfield and can guide the development of similar oilfields.
基金Supported by the National Natural Science Foundation of China(61472161,61402195,61502198)
文摘Deoxyribonucleic acid( DNA) microarray gene expression data has been widely utilized in the field of functional genomics,since it is helpful to study cancer,cells,tissues,organisms etc.But the sample sizes are relatively small compared to the number of genes,so feature selection is very necessary to reduce complexity and increase the classification accuracy of samples. In this paper,a completely newimprovement over particle swarm optimization( PSO) based on fluid mechanics is proposed for the feature selection. This newimprovement simulates the spontaneous process of the air from high pressure to lowpressure,therefore it allows for a search through all possible solution spaces and prevents particles from getting trapped in a local optimum. The experiment shows that,this newimproved algorithm had an elaborate feature simplification which achieved a very precise and significant accuracy in the classification of 8 among the 11 datasets,and it is much better in comparison with other methods for feature selection.
基金This research was financially supported by the National Natural Science Foundation of China(No.72371102).
文摘Modeling and optimizing long-term energy systems can provide solutions to various energy and environmental policies involving public-interest issues.The conventional optimization of long-term energy system models focuses on a single economic goal.However,the increasingly complex demands of energy systems necessitate the comprehensive consideration of multiple dimensional objectives,such as environmental,social,and energy security.Therefore,a multi-objective optimization of long-term energy system models has been developed.Herein,studies pertaining to the multi-objective optimization of long-term energy system models are summarized;the optimization objectives of long-term energy system models are classified into economic,environmental,social,and energy security aspects;and the multi-objective optimization methods are classified and explained based on the preferential expression of decision makers.Finally,the key development direction of the multi-objective optimization of energy system models is discussed.
基金supported by Global Energy Interconnection Group Co.,Ltd.:Assessment of China’s carbon neutrality implementation path and simulation research on policy tool combination(SGGEIG00JYJS2200059).
文摘A larger number of uncertain factors in energy systems influence their evolution.Owing to the complexity of energy system modeling,incorporating uncertainty analysis to energy system modeling is essential for future energy system planning and resource allocation.This study focusses on long-term energy system optimization model.The important uncertain parameters in the model are analyzed and divided into policy,economic,and technical factors.This study specifically addresses the challenges related to carbon emission reduction and energy transition.It involves collecting and organizing relevant research on uncertainty analysis of long-term energy systems.Various energy system uncertainty modeling methods and their applications from the literature are summarized in this review.Finally,important uncertainty factors and uncertainty modeling methods for long-term energy system modeling are discussed,and future research directions are proposed.
文摘Aiming at the problems in current cam profile optimization processes, such as simple dynamics models, limited geometric accuracy and low design automatization level, a new dynamic optimization mode is put forward. Based on the parameterization modeling technique of MSC. ADAMS platform, the different steps in current mode are reorganized, thus obtaining an upgraded mode called the "parameterized-prototype-based cam profile dynamic optimization mode". A parameterized prototype(PP) of valve mechanism is constructed in the course of dynamic optimization for cam profiles. Practically, by utilizing PP and considering the flexibility of the parts in valve mechanism, geometric accuracy and design automatization are improved.
基金support from the National Key R&D Program of China(2022YFB2402600)National Natural Science Foundation of China(52125105,51972329)+2 种基金NSFC/RGC Joint Research Scheme(Project No:N_CityU104/20 and 52061160484)Shenzhen Science and Technology Planning Project(JCYJ20200109115624923,JSGG20220831104004008)Science and Technology Planning Project of Guangdong Province(2019TX05L389).
文摘There has been increasing demand for high-energy density and longcycle life rechargeable batteries to satisfy the ever-growing requirements for nextgeneration energy storage systems.Among all available candidates,dual-ion batteries(DIBs)have drawn tremendous attention in the past few years from both academic and industrial battery communities because of their fascinating advantages of high working voltage,excellent safety,and environmental friendliness.However,the dynamic imbalance between the electrodes and the mismatch of traditional electrolyte systems remain elusive.To fully employ the advantages of DIBs,the overall optimization of anode materials,cathode materials,and compatible electrolyte systems is urgently needed.Here,we review the development history and the reaction mechanisms involved in DIBs.Afterward,the optimization strategies toward DIB materials and electrolytes are highlighted.In addition,their energy-related applications are also provided.Lastly,the research challenges and possible development directions of DIBs are outlined.
基金supported by the National Natural Science Foundation of China(U1960107)the Natural Science Foundation of Hebei Province(E2022501014)+4 种基金the"333"Talent Project of Hebei Province(A202005018)the Fundamental Research Funds for the Central Universities(N2123001)the Science and Technology Research Youth Fund Project of Higher Education Institutions of Hebei Province(QN2022196)the 2023 Hebei Provincial Postgraduate Student Innovation Ability training funding project(CXZZSS2023196)the Performance subsidy fund for Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province(22567627H)。
文摘Though secondary aqueous Zn ion batteries(AZIBs)have been received broad concern in recent years,the development of suitable cathode materials of AZIBs is still a big challenge.The MnO_(2) has been deemed as one of most hopeful cathode materials of AZIBs on account of some extraordinary merits,such as richly natural resources,low toxicity,high discharge potential,and large theoretical capacity.However,the crystal structure diversity of MnO_(2) results in an obvious various of charge storage mechanisms,which can cause great differences in electrochemical performance.Furthermore,several challenges,including intrinsic poor conductivity,dissolution of manganese and sluggish ion transport dynamics should be conquered before real practice.This work focuses on the reaction mechanisms and recent progress of MnO_(2)-based materials of AZIBs.In this review,a detailed review of the reaction mechanisms and optimal ways for enhancing electrochemical performance for MnO_(2)-based materials is proposed.At last,a number of viewpoints on challenges,future development direction,and foreground of MnO_(2)-based materials of aqueous zinc ions batteries are put forward.This review clarifies reaction mechanism of MnO_(2)-based materials of AZIBs,and offers a new perspective for the future invention in MnO_(2)-based cathode materials,thus accelerate the extensive development and commercialization practice of aqueous zinc ions batteries.
基金The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China(Nos.52174122,52074168 and 51874190)Climbing Project of Taishan Scholar in Shandong Province(No.tspd20210313).
文摘The stress concentration and failure at chamber intersections in coal mine are intense,especially in deepburied,super-large section conditions.In this paper,the plastic radius of super-large section chamber under unequal pressure was corrected on the basis of the size effect.Then,stress and failure evolution of intersections under different crossing angles and equivalent angular bisectors were revealed.Furthermore,2 trajectory curves of failure and stress were analytically expressed,which divided the intersection into 5 influencing zones in the light of stress superposition degree.After determining instability trigger point and instability path,instability energy criterion of intersection can be obtained as K>1,which means that the external energy is greater than the sum of energy consumed by surrounding rock instability and supporting structure failure.Taking coal-gangue separation system of Longgu Coal Mine as example,it was found that there was instability risk under original parameters.For long-term stability,an optimization design method was proposed by considering safety factor,and optimal support scheme was obtained.Field monitoring showed intersections deformations were relatively small with the maximum of 125 mm,which verified the rationality of theoretical analysis.This study provides guidance for the stability control of the intersections under the same or similar conditions.
基金Project 50574091 supported by the National Natural Science Foundation of China
文摘Our differential and grading toothed roll crusher blends the advantages of a toothed roll crusher and a jaw crusher and possesses characteristics of great crushing,high breaking efficiency,multi-sieving and has,for the moment,made up for the short- comings of the toothed roll crusher.The moving jaw of the crusher is a crank-rocker mechanism.For optimizing the dynamic per- formance and improving the cracking capability of the crusher,a mathematical model was established to optimize the transmission angleγand to minimize the travel characteristic value m of the moving jaw.Genetic algorithm is used to optimize the crusher crank-rocker mechanism for multi-object design and an optimum result is obtained.According to the implementation,it is shown that the performance of the crusher and the cracking capability of the moving jaw have been improved.
基金Supported by the National Natural Science Foundation of China(51175262)the Research Fund for Doctoral Program of Higher Education of China(20093218110020)+2 种基金the Jiangsu Province Science Foundation for Excellent Youths(BK201210111)the Jiangsu Province Industry-Academy-Research Grant(BY201220116)the Innovative and Excellent Foundation for Doctoral Dissertation of Nanjing University of Aeronautics and Astronautics(BCXJ10-09)
文摘An improved adaptive particle swarm optimization(IAPSO)algorithm is presented for solving the minimum makespan problem of job shop scheduling problem(JSP).Inspired by hormone modulation mechanism,an adaptive hormonal factor(HF),composed of an adaptive local hormonal factor(H l)and an adaptive global hormonal factor(H g),is devised to strengthen the information connection between particles.Using HF,each particle of the swarm can adjust its position self-adaptively to avoid premature phenomena and reach better solution.The computational results validate the effectiveness and stability of the proposed IAPSO,which can not only find optimal or close-to-optimal solutions but also obtain both better and more stability results than the existing particle swarm optimization(PSO)algorithms.