An improved model predictive control algorithm is proposed for Hammerstein-Wiener nonlinear systems.The proposed synthesis algorithm contains two parts:offline design the polytopic invariant sets,and online solve the ...An improved model predictive control algorithm is proposed for Hammerstein-Wiener nonlinear systems.The proposed synthesis algorithm contains two parts:offline design the polytopic invariant sets,and online solve the min-max optimization problem.The polytopic invariant set is adopted to replace the traditional ellipsoid invariant set.And the parameter-correlation nonlinear control law is designed to replace the traditional linear control law.Consequently,the terminal region is enlarged and the control effect is improved.Simulation and experiment are used to verify the validity of the wind tunnel flow field control algorithm.展开更多
Many industry processes can be described as Hammerstein-Wiener nonlinear systems. In this work, an improved constrained model predictive control algorithm is presented for Hammerstein-Wiener systems. In the new approa...Many industry processes can be described as Hammerstein-Wiener nonlinear systems. In this work, an improved constrained model predictive control algorithm is presented for Hammerstein-Wiener systems. In the new approach, the maximum and minimum of partial derivative for input and output nonlinearities are solved in the neighbourhood of the equilibrium. And several parameter-dependent Lyapunov functions, each one corresponding to a different vertex of polytopic descriptions models, are introduced to analyze the stability of Hammerstein-Wiener systems, but only one Lyapunov function is utilized to analyze system stability like the traditional method. Consequently, the conservation of the traditional quadratic stability is removed, and the terminal regions are enlarged. Simulation and field trial results show that the proposed algorithm is valid. It has higher control precision and shorter blowing time than the traditional approach.展开更多
For a class of linear discrete-time systems that is subject to randomly occurred networked packet loss in industrial cyber physical systems, a novel robust model predictive control method with active compensation mech...For a class of linear discrete-time systems that is subject to randomly occurred networked packet loss in industrial cyber physical systems, a novel robust model predictive control method with active compensation mechanism was proposed. The probability distribution of packet loss is described as the Bernoulli distributed white sequences. By using the Lyapunov stability theory, the existing sufficient conditions of the controller are derived from solving a group of linear matrix inequalities. Moreover, dropout-rate with uncertainty and unknown dropout-rate are also considered, which can greatly reduce the conservativeness of the controller. The designed robust model predictive control method not only efficiently eliminates the negative effects of the networked data loss in industrial cyber physical systems but also ensures the stability of closed-loop system. Two examples were provided to illustrate the superiority and effectiveness of the proposed method.展开更多
由于统一电能质量调节器(unified power quality conditioner,UPQC)系统结构复杂、控制难度大,单一的控制策略不足以使其应对电网系统中的各种故障情况。因此,文中采用一种线性自抗扰控制(linear active disturbance rejection control,...由于统一电能质量调节器(unified power quality conditioner,UPQC)系统结构复杂、控制难度大,单一的控制策略不足以使其应对电网系统中的各种故障情况。因此,文中采用一种线性自抗扰控制(linear active disturbance rejection control,LADRC)与模型预测控制(model predictive control,MPC)的复合控制策略。在电压外环控制中采用LADRC策略以提高系统快速性与抗扰性,并给电流内环提供更精确的参考电流信号;在电流内环控制中采用电流MPC策略以提高跟踪参考信号的能力与系统的鲁棒性,同时对模型预测的空间电压矢量的分区进行优化,减少控制器计算量,在保证输出电流质量的前提下提高运算速度。最后,基于MATLAB/Simulink仿真实验平台对系统进行建模仿真,结果验证了采用LADRC-MPC控制策略对电网电压暂升/暂降、负载不对称引起的电流畸变与谐波污染等综合电能质量问题,可以起到更好的补偿效果,对电网电压的支撑能力也更强。展开更多
基金Project(61074074)supported by the National Natural Science Foundation,ChinaProject(KT2012C01J0401)supported by the Group Innovation Fund,China
文摘An improved model predictive control algorithm is proposed for Hammerstein-Wiener nonlinear systems.The proposed synthesis algorithm contains two parts:offline design the polytopic invariant sets,and online solve the min-max optimization problem.The polytopic invariant set is adopted to replace the traditional ellipsoid invariant set.And the parameter-correlation nonlinear control law is designed to replace the traditional linear control law.Consequently,the terminal region is enlarged and the control effect is improved.Simulation and experiment are used to verify the validity of the wind tunnel flow field control algorithm.
基金Project(61074074) supported by the National Natural Science Foundation,ChinaProject(KT2012C01J0401) supported by the Group Innovative Fund,China
文摘Many industry processes can be described as Hammerstein-Wiener nonlinear systems. In this work, an improved constrained model predictive control algorithm is presented for Hammerstein-Wiener systems. In the new approach, the maximum and minimum of partial derivative for input and output nonlinearities are solved in the neighbourhood of the equilibrium. And several parameter-dependent Lyapunov functions, each one corresponding to a different vertex of polytopic descriptions models, are introduced to analyze the stability of Hammerstein-Wiener systems, but only one Lyapunov function is utilized to analyze system stability like the traditional method. Consequently, the conservation of the traditional quadratic stability is removed, and the terminal regions are enlarged. Simulation and field trial results show that the proposed algorithm is valid. It has higher control precision and shorter blowing time than the traditional approach.
基金Project(61673199)supported by the National Natural Science Foundation of ChinaProject(ICT1800400)supported by the Open Research Project of the State Key Laboratory of Industrial Control Technology,Zhejiang University,China
文摘For a class of linear discrete-time systems that is subject to randomly occurred networked packet loss in industrial cyber physical systems, a novel robust model predictive control method with active compensation mechanism was proposed. The probability distribution of packet loss is described as the Bernoulli distributed white sequences. By using the Lyapunov stability theory, the existing sufficient conditions of the controller are derived from solving a group of linear matrix inequalities. Moreover, dropout-rate with uncertainty and unknown dropout-rate are also considered, which can greatly reduce the conservativeness of the controller. The designed robust model predictive control method not only efficiently eliminates the negative effects of the networked data loss in industrial cyber physical systems but also ensures the stability of closed-loop system. Two examples were provided to illustrate the superiority and effectiveness of the proposed method.
文摘由于统一电能质量调节器(unified power quality conditioner,UPQC)系统结构复杂、控制难度大,单一的控制策略不足以使其应对电网系统中的各种故障情况。因此,文中采用一种线性自抗扰控制(linear active disturbance rejection control,LADRC)与模型预测控制(model predictive control,MPC)的复合控制策略。在电压外环控制中采用LADRC策略以提高系统快速性与抗扰性,并给电流内环提供更精确的参考电流信号;在电流内环控制中采用电流MPC策略以提高跟踪参考信号的能力与系统的鲁棒性,同时对模型预测的空间电压矢量的分区进行优化,减少控制器计算量,在保证输出电流质量的前提下提高运算速度。最后,基于MATLAB/Simulink仿真实验平台对系统进行建模仿真,结果验证了采用LADRC-MPC控制策略对电网电压暂升/暂降、负载不对称引起的电流畸变与谐波污染等综合电能质量问题,可以起到更好的补偿效果,对电网电压的支撑能力也更强。