ZnAl_(2)O_(4) and ZnAl_(2)O_(4)-based ceramics have attracted much attention from researchers due to their good microwave dielectric,thermal and mechanical properties.In this work,the influence of 5%(in mass)CuO-TiO_(...ZnAl_(2)O_(4) and ZnAl_(2)O_(4)-based ceramics have attracted much attention from researchers due to their good microwave dielectric,thermal and mechanical properties.In this work,the influence of 5%(in mass)CuO-TiO_(2)-Nb_(2)O_(5)(CTN)ternary composite oxide additives with different composition ratios on sintering behavior and properties of ZnAl_(2)O_(4) microwave dielectric ceramics was investigated.When the molar fraction ranges of Cu,Ti and Nb elements in 5%CTN additives are 0.625-0.875,0-0.250 and 0.125-0.625,respectively,sintering temperature of ZnAl_(2)O_(4) ceramics can be reduced from above 1400℃to below 1000℃.The sintering additives CN(Cu:Nb=1:1,molar ratio)and CTN(Cu:Ti:Nb=4:1:3,molar ratio)can reduce sintering temperature of ZnAl_(2)O_(4) ceramics to 975 and 1000℃,respectively,while maintaining good dielectric properties(dielectric constantε_(r)=11.36,quality factor Q׃=8245 GHz andε_(r)=9.52,Q׃=22249 GHz)and flexural strengths(200 and 161 MPa),which are expected to be applied in preparation of low temperature co-fired ceramic(LTCC)materials with copper electrodes.Low-temperature sintering of the ZnAl_(2)O_(4)+CTN system is characterized as activated sintering.Nanometer-level amorphous interfacial films containing Cu,Ti,and Nb elements are observed at the grain boundaries,which may provide fast diffusion pathways for mass transportation during the sintering process.Valence changes of Ti and Cu ions,along with changes of oxygen vacancies,are confirmed,which provides a potential mechanism for reduced sintering temperature of ZnAl_(2)O_(4) ceramics.In addition,a series of reactions occurring at the grain boundaries can activate these boundaries and further promote the sintering densification process.These results suggest a promising way to design a novel LTCC material with excellent properties based on the low temperature sintering of ceramics with the sintering aid of CuO-TiO_(2)-Nb_(2)O_(5) composite oxide.展开更多
In this paper,a wideband true time delay line for X-band is designed to overcome the beam dispersion problem in a high-resolution spaceborne synthetic aperture radar phased array antenna system.The delay line loads th...In this paper,a wideband true time delay line for X-band is designed to overcome the beam dispersion problem in a high-resolution spaceborne synthetic aperture radar phased array antenna system.The delay line loads the electromagnetic bandgap structure on the upper surface of the substrate integrated waveguide.This is equivalent to including an additional inductance-capacitance for energy storage,which realizes the slow-wave effect.A microstrip line-SIW tapered transition structure is introduced to achieve a low loss and a large bandwidth.In the frequency band between 8-12 GHz,the measured results show that the delay multiplier of the delay line reaches 4 times,i.e.,delay line’s delay time is 4 times larger than 50Ωmicrostrip line with same length.Furthermore,the delay fluctuation,i.e.,the difference between the maximum and minimum delay as a percentage of the standard delay is only 2.5%,the insertion loss is less than-2.5 dB,and the return loss is less than-15 dB.Compared with the existing delay lines,the proposed delay line has the advantages of high delay efficiency,low delay error,wide bandwidth and low loss,which has good practical value and application prospects.展开更多
This article proposes a three-dimensional light field reconstruction method based on neural radiation field(NeRF)called Infrared NeRF for low resolution thermal infrared scenes.Based on the characteristics of the low ...This article proposes a three-dimensional light field reconstruction method based on neural radiation field(NeRF)called Infrared NeRF for low resolution thermal infrared scenes.Based on the characteristics of the low resolution thermal infrared imaging,various optimizations have been carried out to improve the speed and accuracy of thermal infrared 3D reconstruction.Firstly,inspired by Boltzmann's law of thermal radiation,distance is incorporated into the NeRF model for the first time,resulting in a nonlinear propagation of a single ray and a more accurate description of the physical property that infrared radiation intensity decreases with increasing distance.Secondly,in terms of improving inference speed,based on the phenomenon of high and low frequency distribution of foreground and background in infrared images,a multi ray non-uniform light synthesis strategy is proposed to make the model pay more attention to foreground objects in the scene,reduce the distribution of light in the background,and significantly reduce training time without reducing accuracy.In addition,compared to visible light scenes,infrared images only have a single channel,so fewer network parameters are required.Experiments using the same training data and data filtering method showed that,compared to the original NeRF,the improved network achieved an average improvement of 13.8%and 4.62%in PSNR and SSIM,respectively,while an average decreases of 46%in LPIPS.And thanks to the optimization of network layers and data filtering methods,training only takes about 25%of the original method's time to achieve convergence.Finally,for scenes with weak backgrounds,this article improves the inference speed of the model by 4-6 times compared to the original NeRF by limiting the query interval of the model.展开更多
The use of lithium-sulfur(Li-S)batteries is limited by sulfur redox reactions involving multi-phase transformations,especially at low-temperatures.To address this issue,we report a material(FCNS@NCFs)consisting of nit...The use of lithium-sulfur(Li-S)batteries is limited by sulfur redox reactions involving multi-phase transformations,especially at low-temperatures.To address this issue,we report a material(FCNS@NCFs)consisting of nitrogen-doped carbon fibers loaded with a ternary metal sulf-ide((Fe,Co,Ni)_(9)S_(8))for use as the sulfur host in Li-S batteries.This materi-al was prepared using transfer blot filter paper as the carbon precursor,thiourea as the source of nitrogen and sulfur,and FeCl_(3)·6H_(2)O,CoCl_(2)·6H_(2)O and NiCl_(2)·6H_(2)O as the metal ion sources.It was synthesized by an impreg-nation method followed by calcination.The nitrogen doping significantly in-creased the conductivity of the host,and the metal sulfides have excellent catalytic activities.Theoretical calculations,and adsorption and deposition experiments show that active sites on the surface of FCNS@NCFs selectively adsorb polysulfides,facilitate rapid adsorption and conversion,prevent cathode passivation and inhib-it the polysulfide shuttling.The FCNS@NCFs used as the sulfur host has excellent electrochemical properties.Its initial dis-charge capacity is 1639.0 mAh g^(−1) at 0.2 C and room temperature,and it remains a capacity of 1255.1 mAh g^(−1) after 100 cycles.At−20~C,it has an initial discharge capacity of 1578.5 mAh g^(−1) at 0.2 C,with a capacity of 867.5 mAh g^(−1) after 100 cycles.Its excellent performance at both ambient and low temperatures suggests a new way to produce high-performance low-temper-ature Li-S batteries.展开更多
One of the detection objectives of the Chinese Asteroid Exploration mission is to investigate the space environment near the Main-belt Comet(MBC,Active Asteroid)311P/PANSTARRS.This paper outlines the scientific object...One of the detection objectives of the Chinese Asteroid Exploration mission is to investigate the space environment near the Main-belt Comet(MBC,Active Asteroid)311P/PANSTARRS.This paper outlines the scientific objectives,measurement targets,and measurement requirements for the proposed Gas and Ion Analyzer(GIA).The GIA is designed for in-situ mass spectrometry of neutral gases and low-energy ions,such as hydrogen,carbon,and oxygen,in the vicinity of 311P.Ion sampling techniques are essential for the GIA's Time-of-Flight(TOF)mass analysis capabilities.In this paper,we present an enhanced ion sampling technique through the development of an ion attraction model and an ion source model.The ion attraction model demonstrates that adjusting attraction grid voltage can enhance the detection efficiency of low-energy ions and mitigate the repulsive force of ions during sampling,which is influenced by the satellite's surface positive charging.The ion source model simulates the processes of gas ionization and ion multiplication.Simulation results indicate that the GIA can achieve a lower pressure limit below 10-13Pa and possess a dynamic range exceeding 10~9.These performances ensure the generation of ions with stable and consistent current,which is crucial for high-resolution and broad dynamic range mass spectrometer analysis.Preliminary testing experiments have verified GIA's capability to detect gas compositions such as H2O and N2.In-situ measurements near 311P using GIA are expected to significantly contribute to our understanding of asteroid activity mechanisms,the evolution of the atmospheric and ionized environments of main-belt comets,the interactions with solar wind,and the origin of Earth's water.展开更多
The new technology of direct decomposition of H_(2)S into high value-added H_(2) and S,as an alternative to the Claus process in industry,is an ideal route that can not only deal with toxic and abundant H_(2)S waste g...The new technology of direct decomposition of H_(2)S into high value-added H_(2) and S,as an alternative to the Claus process in industry,is an ideal route that can not only deal with toxic and abundant H_(2)S waste gas but also recover clean energy H_(2),which has significant socio-economic and ecological advantages.However,the highly effective decomposition of H_(2)S at low temperatures is still a great challenge,because of the stringent thermodynamic equilibrium constraints(only 20% even at high temperature of 1010℃).Conventional microwave catalysts exhibit unsatisfactory performance at low temperatures(below 600℃).Herein,Mo_(2)C@CeO_(2) catalysts with a core-shell structure were successfully developed for robust microwave catalytic decomposition of H_(2)S at low temperatures.Two carbon precursors,para-phenylenediamine(Mo_(2)C-p)and meta-phenylenediamine(Mo_(2)C-m),were employed to tailor Mo_(2)C configurations.Remarkably,the H_(2)S conversion of Mo_(2)C-p@CeO_(2) catalyst at a low temperature of 550℃ is as high as 92.1%,which is much higher than the H_(2)S equilibrium conversion under the conventional thermal conditions(2.6% at 550℃).To our knowledge,this represents the most active catalyst for microwave catalytic decomposition of H_(2)S at low temperature of 550℃.Notably,Mo_(2)C-p demonstrated superior intrinsic activity(84%)compared to Mo_(2)C-m(6.4%),with XPS analysis revealing that its enhanced performance stems from a higher concentration of Mo_(2+)active sites.This work presents a substitute approach for the efficient utilization of H_(2)S waste gas and opens up a novel avenue for the rational design of microwave catalysts for microwave catalytic reaction at low-temperature.展开更多
Background Soil available phosphorus(AP)deficiency significantly limits cotton production,particularly in arid and saline-alkaline regions.Screening cotton cultivars for low phosphorus(P)tolerance is crucial for the s...Background Soil available phosphorus(AP)deficiency significantly limits cotton production,particularly in arid and saline-alkaline regions.Screening cotton cultivars for low phosphorus(P)tolerance is crucial for the sustainable development of cotton production.However,the effect of different growth media on the screening outcomes remains unclear.To address this,we evaluated the low P tolerance of 25 cotton cultivars through hydroponic culture at two P levels(0.01 and 0.5 mmol·L^(-1) KH_(2)PO_(4))in 2018 and field culture with two P rates(0 and 90 kg·hm^(-2),in P2O5)in 2019.Results In the hydroponic experiments,principal component analysis(PCA)showed that shoot dry weight(SDW)and P utilization efficiency in shoots(PUES)of cotton seedlings explained over 45%of the genetic variation in P nutri-tion.Cotton cultivars were subjected to comprehensive cluster analysis,utilizing agronomic traits(SDW and PUES)during the seedling stage(hydroponic)and yield and fiber quality traits during the mature stage(in field).These cultivars were grouped into four clusters:resistant,moderately resistant,moderately sensitive,and sensitive.In low P conditions(0.01 mmol·L^(-1) KH_(2)PO_(4) and 4.5 mg·kg^(-1) AP),the low-P-resistant cluster showed significantly smaller reduc-tions in SDW(54%),seed cotton yield(3%),lint yield(-2%),fiber length(-1)%),and fiber strength(-3%)compared with the low-P-sensitive cluster(75%,13%,17%,7%,and 9%,respectively).The increase in PUES(299%)in the resist-ant cluster was also significantly higher than in the sensitive cluster(131%).Four of the eight low-P-tolerant cotton cultivars identified in the field and six in the hydroponic screening overlapped in both screenings.Two cultivars overlapped in both screening in the low-P-sensitive cluster.Conclusion Based on the screenings from both field and hydroponic cultures,ZM-9131,CCRI-79,JM-958,and J-228 were identified as low-P-tolerant cotton cultivars,while JM-169,XM-33B,SCRC-28,and LNM-18 were identified as low P-sensitive cotton cultivars.The relationship between field and hydroponic screening results for low-P-tolerant cotton cultivars was strong,although field validation is still required.The low P tolerance of these cultivars was closely associ-ated with SDW and PUES.展开更多
In this paper,a comprehensive overview of radar detection methods for low-altitude targets in maritime environments is presented,focusing on the challenges posed by sea clutter and multipath scattering.The performance...In this paper,a comprehensive overview of radar detection methods for low-altitude targets in maritime environments is presented,focusing on the challenges posed by sea clutter and multipath scattering.The performance of the radar detection methods under sea clutter,multipath,and combined conditions is categorized and summarized,and future research directions are outlined to enhance radar detection performance for low-altitude targets in maritime environments.展开更多
The reduced ability of fatty acids to dissolve and disperse at low temperatures limits their effectiveness in winter applications.In this study,a green and environment-friendly reagent,polyethylene glycol 2000(PEG-200...The reduced ability of fatty acids to dissolve and disperse at low temperatures limits their effectiveness in winter applications.In this study,a green and environment-friendly reagent,polyethylene glycol 2000(PEG-2000),was used to evaluate its effect on the collecting performance of sodium oleate during scheelite flotation at low temperatures.The effect of PEG-2000 on the flotation of scheelite with the collector sodium oleate(NaOL)was studied by flotation tests,surface tension tests,infrared spectral analysis,and zeta potential measurements.Flotation tests showed that adding PEG-2000 can enhance the collecting ability of NaOL on scheelite at low temperature(5℃).The recovery of scheelite with the mixed collector of PEG-200 and NaOL is 4.39%higher than that with NaOL only.The surface tension tests,infrared spectral analysis and zeta potential measurements revealed that PEG-2000 and OL^(−)are co-adsorbed on the scheelite surface at low temperatures.The presence of PEG-2000 promoted the increase of the adsorption concentration of oleate ions(OL^(−))on the scheelite surface.The reason was that PEG-2000 has a shielding effect on the electrostatic repulsion between the OL^(−)groups,which changes the micellar configuration of OL^(−)in the solution system and makes the OL^(−)gather more tightly on the surface of scheelite,leading to the enhancement of its hydrophobicity.This discovery provides a reference for the development of collecting reagents for efficient flotation recovery of scheelite under low temperature environment.展开更多
In practical applications,noble metal doping is often used to prepare high performance gas sensors,but more noble metal doping will lead to higher preparation costs.In this study,CeO_(2)/ZnO-Pd with low palladium cont...In practical applications,noble metal doping is often used to prepare high performance gas sensors,but more noble metal doping will lead to higher preparation costs.In this study,CeO_(2)/ZnO-Pd with low palladium content was prepared by ultrasonic method with fast response and high selectivity for acetone sensing.With the same amount of palladium added,the selectivity coefficient of CeO_(2)/ZnO-Pd is 1.88 times higher than that of the stirred sensor.Compared with the pure PdO-doped CeO_(2)/ZnO-PdO material,the content of Pd in CeO_(2)/ZnO-PdO is about 30%of that in CeO_(2)/ZnO-PdO,but the selectivity coefficient for acetone is 2.56 times higher.The CeO_(2)/ZnO-Pd sensor has a higher response(22.54)to 50×10^(−6) acetone at 300℃and the selectivity coefficient is 2.57 times that of the CeO_(2)/ZnO sensor.The sensor has a sub-second response time(0.6 s)and still has a 2.36 response to 330×10^(−9) of acetone.Ultrasonic doping makes Pd particles smaller and increases the contact area with gas.Meanwhile,the composition of n-p-n heterojunction and the synergistic effect of Pd/PdO improve the sensor performance.It shows that ultrasonic Pd doping provides a way to improve the utilization rate of doped metals and prepare highly selective gas sensors.展开更多
Deep neural networks(DNNs)have achieved great success in many data processing applications.However,high computational complexity and storage cost make deep learning difficult to be used on resource-constrained devices...Deep neural networks(DNNs)have achieved great success in many data processing applications.However,high computational complexity and storage cost make deep learning difficult to be used on resource-constrained devices,and it is not environmental-friendly with much power cost.In this paper,we focus on low-rank optimization for efficient deep learning techniques.In the space domain,DNNs are compressed by low rank approximation of the network parameters,which directly reduces the storage requirement with a smaller number of network parameters.In the time domain,the network parameters can be trained in a few subspaces,which enables efficient training for fast convergence.The model compression in the spatial domain is summarized into three categories as pre-train,pre-set,and compression-aware methods,respectively.With a series of integrable techniques discussed,such as sparse pruning,quantization,and entropy coding,we can ensemble them in an integration framework with lower computational complexity and storage.In addition to summary of recent technical advances,we have two findings for motivating future works.One is that the effective rank,derived from the Shannon entropy of the normalized singular values,outperforms other conventional sparse measures such as the?_1 norm for network compression.The other is a spatial and temporal balance for tensorized neural networks.For accelerating the training of tensorized neural networks,it is crucial to leverage redundancy for both model compression and subspace training.展开更多
Coal pyrolysis integrated with dry reforming of low-carbon alkane(CP-DRA)is an effective way to improve tar yield.Ni/La_(2)O_(3)-ZrO_(2) with a La/Zr ratio of 4 was a good catalyst for DRA to inhibit carbon deposition...Coal pyrolysis integrated with dry reforming of low-carbon alkane(CP-DRA)is an effective way to improve tar yield.Ni/La_(2)O_(3)-ZrO_(2) with a La/Zr ratio of 4 was a good catalyst for DRA to inhibit carbon deposition and obtain high tar yield in CP-DRA.In this study,the fraction distribution and component of tars from CP-DRA and coal pyrolysis in N_(2) atmosphere(CP-N_(2))were characterized by using several methods to understand the effect of DRA on coal pyrolysis.The isotope trace method was also used to discuss the role of low-carbon alkane in CP-DRA.The results showed that the tar from CP-N_(2)is mainly composed of aliphatic compounds with more C_(al),H_(al) and CH+CH_(2),and the tar from CP-DRA contains more Car,Har,and CH_(3),and has lower weight-average molecular weight and more light tar content than CP-N_(2).A small amount of C_(2)H_(6) addition in CP-DRA will raise the ratio of H_(β) and CH+CH_(2).Electron paramagnetic resonance(EPR)analysis shows that the tar from CP-DRA has a higher radical concentration while the corresponding char has a lower radical concentration.The isotope trace experiment showed that alkanes provide·H,·CH_(3),etc.to stabilize the radicals from coal pyrolysis and result in more alkyl aromatic compounds during CP-DRA.展开更多
在6LoWPAN(IPv6 over Low-power Wireless Personal Area Network)的基础上,该文提出应用于物联网的寻址策略,实现基于IEEE 802.15.4协议的底层异构网络与互联网的实时通信。寻址策略包括IPv6地址自动配置和报头压缩。采用的分层地址自...在6LoWPAN(IPv6 over Low-power Wireless Personal Area Network)的基础上,该文提出应用于物联网的寻址策略,实现基于IEEE 802.15.4协议的底层异构网络与互联网的实时通信。寻址策略包括IPv6地址自动配置和报头压缩。采用的分层地址自动配置策略,首先在底层网络内部允许节点使用16位短地址导出的链路本地地址进行数据分组传输,该链路本地地址需通过执行基于分簇的重复地址检测机制保证唯一性;其次,每个底层网络中的Sink节点通过上层IP路由器获取全球路由前缀,并与接口标识符相结合,形成Sink节点的全球地址,实现底层网络与互联网的数据交换。同时,通过在报头压缩编码中植入链路本地地址和全球地址控制位,提出了一种适用于物联网应用的报头压缩方案IIPHC(IoTs IPv6 Header Compression)。如果地址类型为链路本地地址,则采用简单灵活的IIPHC1方案,如果地址类型为全球地址,则采用相对复杂但有效的IIPHC2方案。仿真及测试结果表明,基于6LoWPAN的物联网寻址策略在网络开销、时延、吞吐量、能耗等性能方面存在一定的优越性。展开更多
Not confined to a certain point,such as waveform,this paper systematically studies the low-intercept radio frequency(RF)stealth design of synthetic aperture radar(SAR)from the system level.The study is carried out fro...Not confined to a certain point,such as waveform,this paper systematically studies the low-intercept radio frequency(RF)stealth design of synthetic aperture radar(SAR)from the system level.The study is carried out from two levels.In the first level,the maximum low-intercept range equation of the conventional SAR system is deduced firstly,and then the maximum low-intercept range equation of the multiple-input multiple-output SAR system is deduced.In the second level,the waveform design and imaging method of the low-intercept RF SAR system are given and verified by simulation.Finally,the main technical characteristics of the lowintercept RF stealth SAR system are given to guide the design of low-intercept RF stealth SAR system.展开更多
基金National Natural Science Foundation of China (U24A2052)Shanghai Eastern Talent Plan。
文摘ZnAl_(2)O_(4) and ZnAl_(2)O_(4)-based ceramics have attracted much attention from researchers due to their good microwave dielectric,thermal and mechanical properties.In this work,the influence of 5%(in mass)CuO-TiO_(2)-Nb_(2)O_(5)(CTN)ternary composite oxide additives with different composition ratios on sintering behavior and properties of ZnAl_(2)O_(4) microwave dielectric ceramics was investigated.When the molar fraction ranges of Cu,Ti and Nb elements in 5%CTN additives are 0.625-0.875,0-0.250 and 0.125-0.625,respectively,sintering temperature of ZnAl_(2)O_(4) ceramics can be reduced from above 1400℃to below 1000℃.The sintering additives CN(Cu:Nb=1:1,molar ratio)and CTN(Cu:Ti:Nb=4:1:3,molar ratio)can reduce sintering temperature of ZnAl_(2)O_(4) ceramics to 975 and 1000℃,respectively,while maintaining good dielectric properties(dielectric constantε_(r)=11.36,quality factor Q׃=8245 GHz andε_(r)=9.52,Q׃=22249 GHz)and flexural strengths(200 and 161 MPa),which are expected to be applied in preparation of low temperature co-fired ceramic(LTCC)materials with copper electrodes.Low-temperature sintering of the ZnAl_(2)O_(4)+CTN system is characterized as activated sintering.Nanometer-level amorphous interfacial films containing Cu,Ti,and Nb elements are observed at the grain boundaries,which may provide fast diffusion pathways for mass transportation during the sintering process.Valence changes of Ti and Cu ions,along with changes of oxygen vacancies,are confirmed,which provides a potential mechanism for reduced sintering temperature of ZnAl_(2)O_(4) ceramics.In addition,a series of reactions occurring at the grain boundaries can activate these boundaries and further promote the sintering densification process.These results suggest a promising way to design a novel LTCC material with excellent properties based on the low temperature sintering of ceramics with the sintering aid of CuO-TiO_(2)-Nb_(2)O_(5) composite oxide.
基金Supported by the National Natural Science Foundation of China(61971401)。
文摘In this paper,a wideband true time delay line for X-band is designed to overcome the beam dispersion problem in a high-resolution spaceborne synthetic aperture radar phased array antenna system.The delay line loads the electromagnetic bandgap structure on the upper surface of the substrate integrated waveguide.This is equivalent to including an additional inductance-capacitance for energy storage,which realizes the slow-wave effect.A microstrip line-SIW tapered transition structure is introduced to achieve a low loss and a large bandwidth.In the frequency band between 8-12 GHz,the measured results show that the delay multiplier of the delay line reaches 4 times,i.e.,delay line’s delay time is 4 times larger than 50Ωmicrostrip line with same length.Furthermore,the delay fluctuation,i.e.,the difference between the maximum and minimum delay as a percentage of the standard delay is only 2.5%,the insertion loss is less than-2.5 dB,and the return loss is less than-15 dB.Compared with the existing delay lines,the proposed delay line has the advantages of high delay efficiency,low delay error,wide bandwidth and low loss,which has good practical value and application prospects.
基金Support by the Fundamental Research Funds for the Central Universities(2024300443)the National Natural Science Foundation of China(NSFC)Young Scientists Fund(62405131)。
文摘This article proposes a three-dimensional light field reconstruction method based on neural radiation field(NeRF)called Infrared NeRF for low resolution thermal infrared scenes.Based on the characteristics of the low resolution thermal infrared imaging,various optimizations have been carried out to improve the speed and accuracy of thermal infrared 3D reconstruction.Firstly,inspired by Boltzmann's law of thermal radiation,distance is incorporated into the NeRF model for the first time,resulting in a nonlinear propagation of a single ray and a more accurate description of the physical property that infrared radiation intensity decreases with increasing distance.Secondly,in terms of improving inference speed,based on the phenomenon of high and low frequency distribution of foreground and background in infrared images,a multi ray non-uniform light synthesis strategy is proposed to make the model pay more attention to foreground objects in the scene,reduce the distribution of light in the background,and significantly reduce training time without reducing accuracy.In addition,compared to visible light scenes,infrared images only have a single channel,so fewer network parameters are required.Experiments using the same training data and data filtering method showed that,compared to the original NeRF,the improved network achieved an average improvement of 13.8%and 4.62%in PSNR and SSIM,respectively,while an average decreases of 46%in LPIPS.And thanks to the optimization of network layers and data filtering methods,training only takes about 25%of the original method's time to achieve convergence.Finally,for scenes with weak backgrounds,this article improves the inference speed of the model by 4-6 times compared to the original NeRF by limiting the query interval of the model.
基金partially supported by National Natural Science Foundation of China(52172250)Institute of Process Engineering(IPE)Project for Frontier Basic Research(QYJC-2023-06)。
文摘The use of lithium-sulfur(Li-S)batteries is limited by sulfur redox reactions involving multi-phase transformations,especially at low-temperatures.To address this issue,we report a material(FCNS@NCFs)consisting of nitrogen-doped carbon fibers loaded with a ternary metal sulf-ide((Fe,Co,Ni)_(9)S_(8))for use as the sulfur host in Li-S batteries.This materi-al was prepared using transfer blot filter paper as the carbon precursor,thiourea as the source of nitrogen and sulfur,and FeCl_(3)·6H_(2)O,CoCl_(2)·6H_(2)O and NiCl_(2)·6H_(2)O as the metal ion sources.It was synthesized by an impreg-nation method followed by calcination.The nitrogen doping significantly in-creased the conductivity of the host,and the metal sulfides have excellent catalytic activities.Theoretical calculations,and adsorption and deposition experiments show that active sites on the surface of FCNS@NCFs selectively adsorb polysulfides,facilitate rapid adsorption and conversion,prevent cathode passivation and inhib-it the polysulfide shuttling.The FCNS@NCFs used as the sulfur host has excellent electrochemical properties.Its initial dis-charge capacity is 1639.0 mAh g^(−1) at 0.2 C and room temperature,and it remains a capacity of 1255.1 mAh g^(−1) after 100 cycles.At−20~C,it has an initial discharge capacity of 1578.5 mAh g^(−1) at 0.2 C,with a capacity of 867.5 mAh g^(−1) after 100 cycles.Its excellent performance at both ambient and low temperatures suggests a new way to produce high-performance low-temper-ature Li-S batteries.
基金Supported by the National Natural Science Foundation of China(42474239,41204128)China National Space Administration(Pre-research project on Civil Aerospace Technologies No.D010301)Strategic Priority Research Program of the Chinese Academy of Sciences(XDA17010303)。
文摘One of the detection objectives of the Chinese Asteroid Exploration mission is to investigate the space environment near the Main-belt Comet(MBC,Active Asteroid)311P/PANSTARRS.This paper outlines the scientific objectives,measurement targets,and measurement requirements for the proposed Gas and Ion Analyzer(GIA).The GIA is designed for in-situ mass spectrometry of neutral gases and low-energy ions,such as hydrogen,carbon,and oxygen,in the vicinity of 311P.Ion sampling techniques are essential for the GIA's Time-of-Flight(TOF)mass analysis capabilities.In this paper,we present an enhanced ion sampling technique through the development of an ion attraction model and an ion source model.The ion attraction model demonstrates that adjusting attraction grid voltage can enhance the detection efficiency of low-energy ions and mitigate the repulsive force of ions during sampling,which is influenced by the satellite's surface positive charging.The ion source model simulates the processes of gas ionization and ion multiplication.Simulation results indicate that the GIA can achieve a lower pressure limit below 10-13Pa and possess a dynamic range exceeding 10~9.These performances ensure the generation of ions with stable and consistent current,which is crucial for high-resolution and broad dynamic range mass spectrometer analysis.Preliminary testing experiments have verified GIA's capability to detect gas compositions such as H2O and N2.In-situ measurements near 311P using GIA are expected to significantly contribute to our understanding of asteroid activity mechanisms,the evolution of the atmospheric and ionized environments of main-belt comets,the interactions with solar wind,and the origin of Earth's water.
基金supported by the National Natural Science Foundation of China(22178295,21706225)Natural Science Foundation of Hunan Province(2025JJ50085)Hunan Collaborative Innovation Center of New Chemical Technologies for Environmental Benignity and Efficient Resource Utilization.
文摘The new technology of direct decomposition of H_(2)S into high value-added H_(2) and S,as an alternative to the Claus process in industry,is an ideal route that can not only deal with toxic and abundant H_(2)S waste gas but also recover clean energy H_(2),which has significant socio-economic and ecological advantages.However,the highly effective decomposition of H_(2)S at low temperatures is still a great challenge,because of the stringent thermodynamic equilibrium constraints(only 20% even at high temperature of 1010℃).Conventional microwave catalysts exhibit unsatisfactory performance at low temperatures(below 600℃).Herein,Mo_(2)C@CeO_(2) catalysts with a core-shell structure were successfully developed for robust microwave catalytic decomposition of H_(2)S at low temperatures.Two carbon precursors,para-phenylenediamine(Mo_(2)C-p)and meta-phenylenediamine(Mo_(2)C-m),were employed to tailor Mo_(2)C configurations.Remarkably,the H_(2)S conversion of Mo_(2)C-p@CeO_(2) catalyst at a low temperature of 550℃ is as high as 92.1%,which is much higher than the H_(2)S equilibrium conversion under the conventional thermal conditions(2.6% at 550℃).To our knowledge,this represents the most active catalyst for microwave catalytic decomposition of H_(2)S at low temperature of 550℃.Notably,Mo_(2)C-p demonstrated superior intrinsic activity(84%)compared to Mo_(2)C-m(6.4%),with XPS analysis revealing that its enhanced performance stems from a higher concentration of Mo_(2+)active sites.This work presents a substitute approach for the efficient utilization of H_(2)S waste gas and opens up a novel avenue for the rational design of microwave catalysts for microwave catalytic reaction at low-temperature.
基金the Natural Science Foundation of Xinjiang Uygur Autonomous Region(2024D01A56)the National Key Research and Develop-ment Program of China(2017YFD0201906)+2 种基金the Central Research Institutes of Basic Research and the Public Service Special Foundation(1610162022044)the China Agriculture Research System(CARS-15-11)the Agricultural Sci-ence and Technology Innovation Program of Chinese Academy of Agricultural Sciences.
文摘Background Soil available phosphorus(AP)deficiency significantly limits cotton production,particularly in arid and saline-alkaline regions.Screening cotton cultivars for low phosphorus(P)tolerance is crucial for the sustainable development of cotton production.However,the effect of different growth media on the screening outcomes remains unclear.To address this,we evaluated the low P tolerance of 25 cotton cultivars through hydroponic culture at two P levels(0.01 and 0.5 mmol·L^(-1) KH_(2)PO_(4))in 2018 and field culture with two P rates(0 and 90 kg·hm^(-2),in P2O5)in 2019.Results In the hydroponic experiments,principal component analysis(PCA)showed that shoot dry weight(SDW)and P utilization efficiency in shoots(PUES)of cotton seedlings explained over 45%of the genetic variation in P nutri-tion.Cotton cultivars were subjected to comprehensive cluster analysis,utilizing agronomic traits(SDW and PUES)during the seedling stage(hydroponic)and yield and fiber quality traits during the mature stage(in field).These cultivars were grouped into four clusters:resistant,moderately resistant,moderately sensitive,and sensitive.In low P conditions(0.01 mmol·L^(-1) KH_(2)PO_(4) and 4.5 mg·kg^(-1) AP),the low-P-resistant cluster showed significantly smaller reduc-tions in SDW(54%),seed cotton yield(3%),lint yield(-2%),fiber length(-1)%),and fiber strength(-3%)compared with the low-P-sensitive cluster(75%,13%,17%,7%,and 9%,respectively).The increase in PUES(299%)in the resist-ant cluster was also significantly higher than in the sensitive cluster(131%).Four of the eight low-P-tolerant cotton cultivars identified in the field and six in the hydroponic screening overlapped in both screenings.Two cultivars overlapped in both screening in the low-P-sensitive cluster.Conclusion Based on the screenings from both field and hydroponic cultures,ZM-9131,CCRI-79,JM-958,and J-228 were identified as low-P-tolerant cotton cultivars,while JM-169,XM-33B,SCRC-28,and LNM-18 were identified as low P-sensitive cotton cultivars.The relationship between field and hydroponic screening results for low-P-tolerant cotton cultivars was strong,although field validation is still required.The low P tolerance of these cultivars was closely associ-ated with SDW and PUES.
基金supported by the National Natural Science Foundation of China(62171447)。
文摘In this paper,a comprehensive overview of radar detection methods for low-altitude targets in maritime environments is presented,focusing on the challenges posed by sea clutter and multipath scattering.The performance of the radar detection methods under sea clutter,multipath,and combined conditions is categorized and summarized,and future research directions are outlined to enhance radar detection performance for low-altitude targets in maritime environments.
基金Project(2023JJ10070)supported by the Hunan Provincial Outstanding Youth Fund,ChinaProjects(51974364,52074355,52304316)supported by the National Natural Science Foundation of China。
文摘The reduced ability of fatty acids to dissolve and disperse at low temperatures limits their effectiveness in winter applications.In this study,a green and environment-friendly reagent,polyethylene glycol 2000(PEG-2000),was used to evaluate its effect on the collecting performance of sodium oleate during scheelite flotation at low temperatures.The effect of PEG-2000 on the flotation of scheelite with the collector sodium oleate(NaOL)was studied by flotation tests,surface tension tests,infrared spectral analysis,and zeta potential measurements.Flotation tests showed that adding PEG-2000 can enhance the collecting ability of NaOL on scheelite at low temperature(5℃).The recovery of scheelite with the mixed collector of PEG-200 and NaOL is 4.39%higher than that with NaOL only.The surface tension tests,infrared spectral analysis and zeta potential measurements revealed that PEG-2000 and OL^(−)are co-adsorbed on the scheelite surface at low temperatures.The presence of PEG-2000 promoted the increase of the adsorption concentration of oleate ions(OL^(−))on the scheelite surface.The reason was that PEG-2000 has a shielding effect on the electrostatic repulsion between the OL^(−)groups,which changes the micellar configuration of OL^(−)in the solution system and makes the OL^(−)gather more tightly on the surface of scheelite,leading to the enhancement of its hydrophobicity.This discovery provides a reference for the development of collecting reagents for efficient flotation recovery of scheelite under low temperature environment.
基金Project(2023JJ10005)supported by the Natural Science Foundation of Hunan Province,ChinaProjects(51772082,51804106)supported by the National Natural Science Foundation of China。
文摘In practical applications,noble metal doping is often used to prepare high performance gas sensors,but more noble metal doping will lead to higher preparation costs.In this study,CeO_(2)/ZnO-Pd with low palladium content was prepared by ultrasonic method with fast response and high selectivity for acetone sensing.With the same amount of palladium added,the selectivity coefficient of CeO_(2)/ZnO-Pd is 1.88 times higher than that of the stirred sensor.Compared with the pure PdO-doped CeO_(2)/ZnO-PdO material,the content of Pd in CeO_(2)/ZnO-PdO is about 30%of that in CeO_(2)/ZnO-PdO,but the selectivity coefficient for acetone is 2.56 times higher.The CeO_(2)/ZnO-Pd sensor has a higher response(22.54)to 50×10^(−6) acetone at 300℃and the selectivity coefficient is 2.57 times that of the CeO_(2)/ZnO sensor.The sensor has a sub-second response time(0.6 s)and still has a 2.36 response to 330×10^(−9) of acetone.Ultrasonic doping makes Pd particles smaller and increases the contact area with gas.Meanwhile,the composition of n-p-n heterojunction and the synergistic effect of Pd/PdO improve the sensor performance.It shows that ultrasonic Pd doping provides a way to improve the utilization rate of doped metals and prepare highly selective gas sensors.
基金supported by the National Natural Science Foundation of China(62171088,U19A2052,62020106011)the Medico-Engineering Cooperation Funds from University of Electronic Science and Technology of China(ZYGX2021YGLH215,ZYGX2022YGRH005)。
文摘Deep neural networks(DNNs)have achieved great success in many data processing applications.However,high computational complexity and storage cost make deep learning difficult to be used on resource-constrained devices,and it is not environmental-friendly with much power cost.In this paper,we focus on low-rank optimization for efficient deep learning techniques.In the space domain,DNNs are compressed by low rank approximation of the network parameters,which directly reduces the storage requirement with a smaller number of network parameters.In the time domain,the network parameters can be trained in a few subspaces,which enables efficient training for fast convergence.The model compression in the spatial domain is summarized into three categories as pre-train,pre-set,and compression-aware methods,respectively.With a series of integrable techniques discussed,such as sparse pruning,quantization,and entropy coding,we can ensemble them in an integration framework with lower computational complexity and storage.In addition to summary of recent technical advances,we have two findings for motivating future works.One is that the effective rank,derived from the Shannon entropy of the normalized singular values,outperforms other conventional sparse measures such as the?_1 norm for network compression.The other is a spatial and temporal balance for tensorized neural networks.For accelerating the training of tensorized neural networks,it is crucial to leverage redundancy for both model compression and subspace training.
基金supported by the National Natural Science Foundation of China(21576046)the Innovation Team Support Program in Key Areas of the Dalian Science and Technology Bureau(2019RT10).
文摘Coal pyrolysis integrated with dry reforming of low-carbon alkane(CP-DRA)is an effective way to improve tar yield.Ni/La_(2)O_(3)-ZrO_(2) with a La/Zr ratio of 4 was a good catalyst for DRA to inhibit carbon deposition and obtain high tar yield in CP-DRA.In this study,the fraction distribution and component of tars from CP-DRA and coal pyrolysis in N_(2) atmosphere(CP-N_(2))were characterized by using several methods to understand the effect of DRA on coal pyrolysis.The isotope trace method was also used to discuss the role of low-carbon alkane in CP-DRA.The results showed that the tar from CP-N_(2)is mainly composed of aliphatic compounds with more C_(al),H_(al) and CH+CH_(2),and the tar from CP-DRA contains more Car,Har,and CH_(3),and has lower weight-average molecular weight and more light tar content than CP-N_(2).A small amount of C_(2)H_(6) addition in CP-DRA will raise the ratio of H_(β) and CH+CH_(2).Electron paramagnetic resonance(EPR)analysis shows that the tar from CP-DRA has a higher radical concentration while the corresponding char has a lower radical concentration.The isotope trace experiment showed that alkanes provide·H,·CH_(3),etc.to stabilize the radicals from coal pyrolysis and result in more alkyl aromatic compounds during CP-DRA.
文摘在6LoWPAN(IPv6 over Low-power Wireless Personal Area Network)的基础上,该文提出应用于物联网的寻址策略,实现基于IEEE 802.15.4协议的底层异构网络与互联网的实时通信。寻址策略包括IPv6地址自动配置和报头压缩。采用的分层地址自动配置策略,首先在底层网络内部允许节点使用16位短地址导出的链路本地地址进行数据分组传输,该链路本地地址需通过执行基于分簇的重复地址检测机制保证唯一性;其次,每个底层网络中的Sink节点通过上层IP路由器获取全球路由前缀,并与接口标识符相结合,形成Sink节点的全球地址,实现底层网络与互联网的数据交换。同时,通过在报头压缩编码中植入链路本地地址和全球地址控制位,提出了一种适用于物联网应用的报头压缩方案IIPHC(IoTs IPv6 Header Compression)。如果地址类型为链路本地地址,则采用简单灵活的IIPHC1方案,如果地址类型为全球地址,则采用相对复杂但有效的IIPHC2方案。仿真及测试结果表明,基于6LoWPAN的物联网寻址策略在网络开销、时延、吞吐量、能耗等性能方面存在一定的优越性。
基金supported by the National Key R&D Program of China(2017YFC1405600)the Fundamental Research Funds for the Central Universities(JB180213)
文摘Not confined to a certain point,such as waveform,this paper systematically studies the low-intercept radio frequency(RF)stealth design of synthetic aperture radar(SAR)from the system level.The study is carried out from two levels.In the first level,the maximum low-intercept range equation of the conventional SAR system is deduced firstly,and then the maximum low-intercept range equation of the multiple-input multiple-output SAR system is deduced.In the second level,the waveform design and imaging method of the low-intercept RF SAR system are given and verified by simulation.Finally,the main technical characteristics of the lowintercept RF stealth SAR system are given to guide the design of low-intercept RF stealth SAR system.