针对核密度估计载荷外推全局固定带宽的局限性,提出一种基于KANN-DBSCAN(K-average nearest neighbor density-based spatial clustering of applications with noise)改进带宽取值的核密度估计(kernel density estimation, KDE)载荷外...针对核密度估计载荷外推全局固定带宽的局限性,提出一种基于KANN-DBSCAN(K-average nearest neighbor density-based spatial clustering of applications with noise)改进带宽取值的核密度估计(kernel density estimation, KDE)载荷外推方法。通过KANN-DBSCAN聚类算法对载荷数据进行分组聚类,采用拇指法求得不同簇间的最优带宽,然后进行核密度估计,再采用蒙特卡洛模拟进行外推。以某电动汽车在用户道路的实测载荷数据为应用对象,对外推方法的合理性进行检验。从统计参数检验量、拟合度检验和伪损伤检验3个指标对外推效果进行评估。结果表明:相比固定带宽的核密度估计外推方法,基于KANN-DBSCSN核密度估计的外推方法获得的外推载荷在统计参数上与实测载荷更为接近,均值、标准差和最大值的误差分别仅为1.9%、 4.3%和1.9%;幅值累计频次曲线拟合度R2均大于0.99,伪损伤均接近1。结果验证了该聚类方法在核密度估计载荷外推的有效性,有助于编制汽车在用户道路上的载荷谱,为具有相似载荷分布特点的机械零部件载荷外推提供了参考。展开更多
交叉熵法可显著加速电网可靠性评估,但往往聚焦于独立随机变量,若将其拓展至相关性变量可进一步提升加速性能。为有效获取相关性变量的重要抽样密度函数以实现其重要抽样,针对相关性建模中广泛使用的核密度估计模型(kernel density esti...交叉熵法可显著加速电网可靠性评估,但往往聚焦于独立随机变量,若将其拓展至相关性变量可进一步提升加速性能。为有效获取相关性变量的重要抽样密度函数以实现其重要抽样,针对相关性建模中广泛使用的核密度估计模型(kernel density estimation,KDE)开展了交叉熵优化研究。因KDE模型不属于指数分布家族,传统交叉熵优化难以实施,故利用复合抽样算法特点提出了新颖的直接交叉熵优化方法,推导出KDE模型最优权重参数的解析表达式。因权重参数数量级较小,直接优化易导致准确性退化,故基于子集模拟思想进一步提出间接交叉熵优化方法,将较小的权重参数优化转换成较大的条件概率优化,提升了优化准确性。通过MRTS79和MRTS96可靠性测试系统的评估分析,验证了所提方法在含相关性变量电网可靠性评估中的高效加速性能。展开更多
文摘针对核密度估计载荷外推全局固定带宽的局限性,提出一种基于KANN-DBSCAN(K-average nearest neighbor density-based spatial clustering of applications with noise)改进带宽取值的核密度估计(kernel density estimation, KDE)载荷外推方法。通过KANN-DBSCAN聚类算法对载荷数据进行分组聚类,采用拇指法求得不同簇间的最优带宽,然后进行核密度估计,再采用蒙特卡洛模拟进行外推。以某电动汽车在用户道路的实测载荷数据为应用对象,对外推方法的合理性进行检验。从统计参数检验量、拟合度检验和伪损伤检验3个指标对外推效果进行评估。结果表明:相比固定带宽的核密度估计外推方法,基于KANN-DBSCSN核密度估计的外推方法获得的外推载荷在统计参数上与实测载荷更为接近,均值、标准差和最大值的误差分别仅为1.9%、 4.3%和1.9%;幅值累计频次曲线拟合度R2均大于0.99,伪损伤均接近1。结果验证了该聚类方法在核密度估计载荷外推的有效性,有助于编制汽车在用户道路上的载荷谱,为具有相似载荷分布特点的机械零部件载荷外推提供了参考。
文摘交叉熵法可显著加速电网可靠性评估,但往往聚焦于独立随机变量,若将其拓展至相关性变量可进一步提升加速性能。为有效获取相关性变量的重要抽样密度函数以实现其重要抽样,针对相关性建模中广泛使用的核密度估计模型(kernel density estimation,KDE)开展了交叉熵优化研究。因KDE模型不属于指数分布家族,传统交叉熵优化难以实施,故利用复合抽样算法特点提出了新颖的直接交叉熵优化方法,推导出KDE模型最优权重参数的解析表达式。因权重参数数量级较小,直接优化易导致准确性退化,故基于子集模拟思想进一步提出间接交叉熵优化方法,将较小的权重参数优化转换成较大的条件概率优化,提升了优化准确性。通过MRTS79和MRTS96可靠性测试系统的评估分析,验证了所提方法在含相关性变量电网可靠性评估中的高效加速性能。