期刊文献+
共找到420篇文章
< 1 2 21 >
每页显示 20 50 100
基于KPCA降维的综合评价法筛选最优温室白萝卜水溶肥施用量
1
作者 魏煜嵘 马英杰 艾鹏睿 《中国瓜菜》 北大核心 2025年第2期107-114,共8页
为深入研究乌鲁木齐地区温室白萝卜的最佳水溶性肥料施用方案,设置了4个不同浓度梯度的水溶性肥料处理组,构建基于核主成分分析(KPCA)降维技术的隶属函数综合评价体系,旨在评估水溶性肥料对温室萝卜生长、产量及果实品质等多方面指标的... 为深入研究乌鲁木齐地区温室白萝卜的最佳水溶性肥料施用方案,设置了4个不同浓度梯度的水溶性肥料处理组,构建基于核主成分分析(KPCA)降维技术的隶属函数综合评价体系,旨在评估水溶性肥料对温室萝卜生长、产量及果实品质等多方面指标的影响。研究结果显示,高浓度的氮、磷、钾水溶性肥料有助于提升产量;而低浓度的水溶性肥料则有利于提升维生素C和可溶性糖含量;中等浓度的水溶性肥料则对提高单株单果质量有积极作用。此外,水溶性肥料浓度与干物质质量、株高与可溶性糖含量、叶片数与叶长、667 m^(2)产量与收益比等指标间存在显著的正相关关系,而株高与单果质量、维生素C含量与SPAD值、单果质量与可溶性糖含量之间则表现出显著的负相关性。这些结果揭示了白萝卜的农艺性状与品质之间存在一定的相关性和相互制约关系。为了全面评估不同浓度水溶性肥料对温室萝卜生长、产量及品质的影响,采用基于KPCA降维技术的多指标综合评价体系,提取了3个主成分F1、F2、F3;通过隶属函数对这3个主成分进行了综合评价,并分析了12个指标间的相关性以及地上部分干物质的积累规律,以增产提质为目标,筛选出最优的水肥处理方案为M2处理(高磷型105 kg·hm^(-2)、生根型785 kg·hm^(-2)、农用微生物菌剂75 kg·hm^(-2)、根茎专用型105 kg·hm^(-2))。 展开更多
关键词 温室白萝卜 土壤氮磷钾 kpca降维 隶属函数评价
在线阅读 下载PDF
基于KPCA-SENet的晶闸管退化特征提取与表征方法
2
作者 陈权 吴骏 +3 位作者 陈忠 祝琳 郑常宝 黄宇 《半导体技术》 北大核心 2025年第8期851-859,共9页
晶闸管长期使用后会出现不可逆的性能下降,达到一定阈值后引发电路故障的概率会大幅上升,给特高压系统带来严重风险。为了保证特高压电网系统的安全运行,晶闸管的可靠性分析与退化状态评估尤为重要。通过仿真模拟加速寿命试验获取晶闸... 晶闸管长期使用后会出现不可逆的性能下降,达到一定阈值后引发电路故障的概率会大幅上升,给特高压系统带来严重风险。为了保证特高压电网系统的安全运行,晶闸管的可靠性分析与退化状态评估尤为重要。通过仿真模拟加速寿命试验获取晶闸管的通态压降、反向恢复电荷、反向漏电流及反向恢复峰值电流的退化数据。首先通过结合局部均值分解(LMD)和自适应阈值对称小波基(symN)的方法进行降噪预处理,再通过结合核主成分分析(KPCA)与通道域注意力机制(SENet)对退化特征进行提取与融合,最后通过转换函数拟合建立综合退化指标(CDI),实现对晶闸管的退化表征。采用多个指标对该方法进行验证,结果表明CDI与退化特征参数及退化时间呈现出高度的相关性,证实了该方法的有效性。 展开更多
关键词 晶闸管 可靠性 特征提取 退化 表征方法 核主成分分析与通道注意力机制(kpca-SENet)
在线阅读 下载PDF
提升KPCA方法特征抽取效率的算法设计 被引量:3
3
作者 徐勇 杨静宇 陆建峰 《中国工程科学》 2005年第10期38-42,共5页
在PCA基础上发展出的KPCA方法能抽取样本的非线性特征分量。然而,基于KPCA的特征抽取需计算所有训练样本与待抽取特征的样本间的核函数,因此,训练集的大小制约着特征抽取的效率。为了提高效率,假设特征空间中变换轴可由一部分训练样本(... 在PCA基础上发展出的KPCA方法能抽取样本的非线性特征分量。然而,基于KPCA的特征抽取需计算所有训练样本与待抽取特征的样本间的核函数,因此,训练集的大小制约着特征抽取的效率。为了提高效率,假设特征空间中变换轴可由一部分训练样本(节点)线性表出,并设计了改进的KPCA算法(IKPCA)。该算法抽取某样本特征时,只需计算该样本与节点间的核函数即可。实验结果显示,IKPCA在对应较好性能的同时,具有明显的效率上的优势。 展开更多
关键词 kpca Ikpca 特征抽取 特征空间
在线阅读 下载PDF
改进KPCA结合多目标蜻蜓算法优化BP神经网络的联合收割机故障诊断
4
作者 孟桐 雷鸣 +2 位作者 宋文广 王丹丹 黄梦可 《机电工程》 北大核心 2025年第7期1258-1267,共10页
针对联合收割机数据维度高、诊断效果不理想的问题,提出了一种改进核主成分分析(KPCA)结合多目标蜻蜓算法(MTDA)优化反向传播(BP)神经网络的联合收割机故障诊断方法。首先,采用Morlet小波作为KPCA的核函数,其融合了高斯包络与正弦波特性... 针对联合收割机数据维度高、诊断效果不理想的问题,提出了一种改进核主成分分析(KPCA)结合多目标蜻蜓算法(MTDA)优化反向传播(BP)神经网络的联合收割机故障诊断方法。首先,采用Morlet小波作为KPCA的核函数,其融合了高斯包络与正弦波特性,能够有效捕捉收割机的瞬态变化与局部异常,从而提取出了不同工况下的主要成分,降低了数据维度,减少了冗余信息;其次,针对传统蜻蜓算法的局限性,引入了自适应变异策略、非线性惯性权重及动态收敛因子,构建了多目标蜻蜓算法,对Schaffer、Michalewicz和Rastrigin函数进行了求解,验证了MTDA能显著提升全局与局部搜索平衡能力;最后,利用MTDA对BP神经网络的权值和阈值进行了优化,构建了MTDA-BP综合故障诊断模型,将模型应用于联合收割机的故障诊断中,通过实验验证了其有效性。研究结果表明:故障诊断平均精度达到96.7%,通过与当前主流方法的实验对比分析,采用Micro-average ROC进行了模型评价,结果显示该模型的曲线下面积(AUC)为0.967。实验结果充分证明了该模型在检测精确度与泛化性方面均具有显著优势,该研究也为解决智能农业机械中的诊断提供了一种有效的方法。 展开更多
关键词 核主成分分析 MORLET小波 多目标蜻蜓算法 反向传播神经网络 联合收割机 故障诊断
在线阅读 下载PDF
基于KPCA-SOA-KELM的海底油气管道内腐蚀速率预测
5
作者 范蓬勃 张新生 《热加工工艺》 北大核心 2025年第19期64-68,73,共6页
为提高海底油气管道内腐蚀速率预测的精度,选取南海某油田混输管段腐蚀数据为例,建立基于核主成分分析(KPCA)、海鸥优化算法(SOA)和核极限学习机(KELM)的内腐蚀速率预测模型。首先利用KPCA对影响管道内腐蚀的因素进行降维,确定输入变量... 为提高海底油气管道内腐蚀速率预测的精度,选取南海某油田混输管段腐蚀数据为例,建立基于核主成分分析(KPCA)、海鸥优化算法(SOA)和核极限学习机(KELM)的内腐蚀速率预测模型。首先利用KPCA对影响管道内腐蚀的因素进行降维,确定输入变量;然后利用KELM对内腐蚀速率进行建模预测,并利用SOA对KELM模型中的核参数和正则化系数进行寻优。结果表明:KPCA-SOA-KELM预测模型的平均绝对百分比误差仅为1.8310%,均方根误差为0.05。针对海底油气管道内腐蚀速率的预测问题,相比于其他模型,该模型的预测结果更加准确。 展开更多
关键词 海底油气管道 内腐蚀速率 核主成分分析 海鸥优化算法 核极限学习机
在线阅读 下载PDF
基于KPCA准则的SAR目标特征提取与识别 被引量:54
6
作者 韩萍 吴仁彪 +1 位作者 王兆华 王蕴红 《电子与信息学报》 EI CSCD 北大核心 2003年第10期1297-1301,共5页
该文给出了一种基于 KPCA(Kernel Principal Component Analysis)和 SVM(SupportVector Machine)的合成孔径雷达(Synthetic Aperture Radar,SAR)目标特征提取与识别方法。该方法在非线性空间内利用线性 PCA(Principal Component Analys... 该文给出了一种基于 KPCA(Kernel Principal Component Analysis)和 SVM(SupportVector Machine)的合成孔径雷达(Synthetic Aperture Radar,SAR)目标特征提取与识别方法。该方法在非线性空间内利用线性 PCA(Principal Component Analysis)准则提取目标特征并由 SVM分类器完成目标识别。基于美国国防高级研究计划署(Defense Advanced Research Project Agency,DARPA)和空军研究室(Air Force Research Laboratory,AFRL)提供的实测 SAR地面目标数据的实验结果表明,该文方法不但能够提高识别率,具有良好的推广能力,同时还降低了对方位估计精度的要求,是一种有效的 SAR目标特征提取与识别方法。 展开更多
关键词 合成孔径雷达 目标识别 kpca准则 特征提取 SVM分类器 SAR
在线阅读 下载PDF
基于KPCA-HSMM设备退化状态识别与故障预测方法研究 被引量:29
7
作者 曾庆虎 邱静 +1 位作者 刘冠军 谭晓栋 《仪器仪表学报》 EI CAS CSCD 北大核心 2009年第7期1341-1346,共6页
为消除多通道观测信息冗余,压缩高维故障特征,提出基于KPCA多通道特征信息融合的HSMM设备退化状态识别与故障预测新方法。首先,对采集的单通道振动信号进行小波相关滤波处理,构造单通道振动信号的小波相关特征尺度熵向量,然后,利用KPCA... 为消除多通道观测信息冗余,压缩高维故障特征,提出基于KPCA多通道特征信息融合的HSMM设备退化状态识别与故障预测新方法。首先,对采集的单通道振动信号进行小波相关滤波处理,构造单通道振动信号的小波相关特征尺度熵向量,然后,利用KPCA方法对多通道的小波相关特征尺度熵向量进行冗余消除和特征融合,得到多通道的融合小波相关特征尺度熵向量,并以此向量作为HSMM的输入进行训练,建立基于HSMM的设备运行状态分类器与故障预测模型,从而实现设备退化状态识别与故障预测。将其应用到滚动轴承的退化状态识别与故障预测中,验证了该方法的有效性。 展开更多
关键词 故障预测 状态识别 小波相关特征尺度熵 信息融合 kpca 隐半马尔可夫模型(HSMM)
在线阅读 下载PDF
基于KPCA和近红外光谱的鉴别玉米单倍体方法研究 被引量:12
8
作者 刘文杰 李卫军 +2 位作者 李浩光 覃鸿 宁欣 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2017年第7期2024-2027,共4页
玉米的单倍体鉴别技术对玉米单倍体育种技术非常重要。近红外光谱分析技术以其操作简便,可在线分析监测,速度快,无损,测试成本低等特点在农业领域备受关注,应用广泛。实验首先通过美国JDSU公司的近红外光谱仪采集由国家玉米改良中心提... 玉米的单倍体鉴别技术对玉米单倍体育种技术非常重要。近红外光谱分析技术以其操作简便,可在线分析监测,速度快,无损,测试成本低等特点在农业领域备受关注,应用广泛。实验首先通过美国JDSU公司的近红外光谱仪采集由国家玉米改良中心提供的玉米种子单倍体、多倍体的近红外光谱数据,然后对获得的原始数据做平滑(smoothing)、一阶导(first derivative,FD)和矢量归一化(vector normalization,VN)预处理以消除其噪声影响,再采用核函数为高斯核函数(Gaussian kernel function)的核主成分分析(kernel principal components analysis,KPCA)的方法将玉米种子的近红外光谱数据映射到高维空间中,并对映射后的数据做非线性特征提取,然后应用支持向量机(support vector machines,SVM)对提取的玉米种子单倍体、多倍体光谱数据的非线性特征建立分类模型,最后输入测试数据进行玉米单倍体、多倍体的分类鉴别测试,预测玉米种子是否是单倍体。设计了两组对比试验,其正确识别率的平均值分别达到95%和93.57%。在该实验中,基于KPCA的玉米单倍体识别算法的性能表现较好、识别率较高。通过两组对比实验,证明了玉米种子的近红外光谱数据更适于先将其映射于高维空间中进行特征提取,再对提取的特征进行建模、分类分析。该实验为玉米单倍体识别技术提供了新的思路和方法。 展开更多
关键词 近红外光谱 特征提取 kpca 玉米单倍体
在线阅读 下载PDF
基于KPCA-SVM的断路器故障稳健诊断方法 被引量:9
9
作者 梅飞 梅军 +1 位作者 郑建勇 朱克东 《电工技术学报》 EI CSCD 北大核心 2014年第S1期50-58,共9页
高压断路器是电力系统中重要的一次设备,其故障诊断是实现状态检修的前提。在实际应用中,诊断模型的准确度会受到数据干扰而产生误判,严重影响检修效果。为提高诊断模型的鲁棒性,本文从采样数据角度对故障诊断进行了研究,提出了基于KPCA... 高压断路器是电力系统中重要的一次设备,其故障诊断是实现状态检修的前提。在实际应用中,诊断模型的准确度会受到数据干扰而产生误判,严重影响检修效果。为提高诊断模型的鲁棒性,本文从采样数据角度对故障诊断进行了研究,提出了基于KPCA-SVM的断路器故障稳健诊断方法。利用核主元分析分离正常数据样本空间与故障数据样本空间,加大了训练样本间的差异度;再以支持向量机建立故障诊断模型对断路器主要故障进行诊断,极大提升了诊断模型的抗干扰性能,实验证明取得了较好的效果。 展开更多
关键词 断路器 故障诊断 kpca SVM
在线阅读 下载PDF
基于PCA和KPCA特征抽取的SVM网络入侵检测方法 被引量:20
10
作者 高海华 杨辉华 王行愚 《华东理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2006年第3期321-326,共6页
提出一种新颖的基于特征抽取的异常检测方法,应用主分量分析(PCA)和核主分量分析(KPCA)抽取入侵特征,再应用支持向量机(SVM)检测入侵。其中PCA对输入特征做线性变换,而KPCA通过核函数进行非线性变换。利用KDD 99数据集,将PCA-SVM、KPCA-... 提出一种新颖的基于特征抽取的异常检测方法,应用主分量分析(PCA)和核主分量分析(KPCA)抽取入侵特征,再应用支持向量机(SVM)检测入侵。其中PCA对输入特征做线性变换,而KPCA通过核函数进行非线性变换。利用KDD 99数据集,将PCA-SVM、KPCA-SVM与SVM、PCR、KPCR进行比较,结果显示:在不降低分类器性能的情况下,特征抽取方法能对输入数据有效降维。在各种方法中,KPCA与SVM的结合能得到最优入侵检测性能。 展开更多
关键词 异常检测 特征抽取 主分量分析(PCA) 核主分量分析(kpca) 支持向量机 (SVM)
在线阅读 下载PDF
基于小波变换和改进KPCA的奶牛个体识别研究 被引量:10
11
作者 张满囤 单新媛 +3 位作者 于洋 米娜 阎刚 郭迎春 《浙江农业学报》 CSCD 北大核心 2017年第12期2000-2008,共9页
为加快畜牧业现代化程度,克服传统方法中奶牛个体识别正确率低的缺陷,针对奶牛个体纹理特征,对传统KPCA(核主成分分析)方法从降低协方差矩阵维数和引入类别信息两个角度进行改进,并与小波变换进行结合,应用于奶牛个体识别领域。首先对... 为加快畜牧业现代化程度,克服传统方法中奶牛个体识别正确率低的缺陷,针对奶牛个体纹理特征,对传统KPCA(核主成分分析)方法从降低协方差矩阵维数和引入类别信息两个角度进行改进,并与小波变换进行结合,应用于奶牛个体识别领域。首先对归一化后的奶牛图像进行一层小波分解得到4个分量子图,然后对各子图利用改进的KPCA进行特征提取并引入加权策略融合,最后构造出多类SVM分类器进行学习分类。将预先采集的20头奶牛个体的视频数据转化成图片序列并选取20 000张组成实验数据集,通过多组对比实验对小波融合系数、融合向量组数、特征维数三个重要参数进行设定,然后利用不同算法进行奶牛个体识别实验。结果表明,提出方法在识别正确率达到96.31%时,仅用了4.20 s,较其他算法具有明显优势,可以有效地应用到奶牛个体识别领域,兼具高性能、低成本的优势。 展开更多
关键词 小波变换 改进kpca 特征融合 奶牛 个体识别
在线阅读 下载PDF
基于KPCA-LVQ和内置传感器信息采集的滚珠丝杠故障诊断研究 被引量:4
12
作者 俞昆 谭继文 +1 位作者 李善 战红 《机床与液压》 北大核心 2016年第21期155-158,共4页
研究了全闭环数控机床伺服进给系统的编码器、光栅尺等内置传感器信息采集并从中获取滚珠丝杠故障状态信息的方法;在分析了滚珠丝杠信号的非线性、非平稳性特征的基础上,提出了基于小波包分解提取滚珠丝杠故障状态信号能量特征值的方法... 研究了全闭环数控机床伺服进给系统的编码器、光栅尺等内置传感器信息采集并从中获取滚珠丝杠故障状态信息的方法;在分析了滚珠丝杠信号的非线性、非平稳性特征的基础上,提出了基于小波包分解提取滚珠丝杠故障状态信号能量特征值的方法,并用该能量特征值与峰度、频率、方差等时-频特征量组成滚珠丝杠故障诊断的原始特征集,采用KPCA法剔除了对故障诊断贡献率不明显的冗余特征;建立了基于KPCA-LVQ神经网络的滚珠丝杠故障模型;并通过试验,对KPCA-LVQ与KPCA-BP两种神经网络的诊断结果进行了对比分析。证明了文中所研究方法对滚珠丝杠故障诊断的可行性和有效性。 展开更多
关键词 内置传感器信息采集 滚珠丝杠 kpca-LVQ kpca-BP 故障诊断
在线阅读 下载PDF
基于改进KPCA算法的车牌字符识别方法 被引量:7
13
作者 吴成东 樊玉泉 +1 位作者 张云洲 刘濛 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2008年第5期629-632,共4页
针对核主元分析(KPCA)用于提取车牌字符特征不足的情况,提出了一种采用多组均值矢量来代替原始图像矢量进行核矩阵计算的方法,该方法使得核矩阵维数大幅降低,同时有效地保留了字符图像信息.实验结果表明,该方法在不降低识别精度的基础... 针对核主元分析(KPCA)用于提取车牌字符特征不足的情况,提出了一种采用多组均值矢量来代替原始图像矢量进行核矩阵计算的方法,该方法使得核矩阵维数大幅降低,同时有效地保留了字符图像信息.实验结果表明,该方法在不降低识别精度的基础上对输入数据实现了有效的降维,大大缩短了计算时间,有效地满足了车牌实时识别系统技术要求.通过实验对比可知,该方法比目前常用的PCA及FLD算法具有更高的性能指标. 展开更多
关键词 核主元分析(kpca) 字符识别 图像 降维 车牌
在线阅读 下载PDF
采用KPCA和BP神经网络的单目车载红外图像深度估计 被引量:12
14
作者 孙韶媛 李琳娜 赵海涛 《红外与激光工程》 EI CSCD 北大核心 2013年第9期2348-2352,共5页
提出一种基于监督学习得到深度估计模型的单目车载红外图像深度估计方法。首先用核主成分分析法(KPCA)筛选红外图像特征。将最初提取的红外图像特征用核函数非线性映射到一个线性可分的高维特征空间,再完成主成分分析(PCA),得到降维后... 提出一种基于监督学习得到深度估计模型的单目车载红外图像深度估计方法。首先用核主成分分析法(KPCA)筛选红外图像特征。将最初提取的红外图像特征用核函数非线性映射到一个线性可分的高维特征空间,再完成主成分分析(PCA),得到降维后的红外图像特征。然后以BP神经网络为模型基础,对红外图像特征和深度值进行训练,训练后的深度估计模型可对单目车载红外图像的深度分布进行估计。实验结果证明,利用该模型估计的单目车载红外图像的深度信息与原红外图像的深度信息一致。 展开更多
关键词 深度估计 红外图像 kpca BP神经网络
在线阅读 下载PDF
基于小波分析与KPCA的人脸识别方法 被引量:7
15
作者 李伟红 龚卫国 +2 位作者 陈伟民 梁毅雄 尹克重 《计算机应用》 CSCD 北大核心 2005年第10期2339-2341,共3页
提出结合小波变换及KPCA的特点获取人脸特征,设计线性SVM分类器进行分类识别。由于KPCA中核函数的参数选择以及训练样本与测试样本的划分对分类识别有一定的影响,为了获得最优的识别效果,在UM IST人脸数据库上进行相应的实验。结果表明... 提出结合小波变换及KPCA的特点获取人脸特征,设计线性SVM分类器进行分类识别。由于KPCA中核函数的参数选择以及训练样本与测试样本的划分对分类识别有一定的影响,为了获得最优的识别效果,在UM IST人脸数据库上进行相应的实验。结果表明本方法可以获得较好的分类识别率,是一种快速、有效的人脸识别方法。 展开更多
关键词 人脸识别 小波变换(WT) 核主元分析(kpca) 支持向量机(SVM)
在线阅读 下载PDF
基于KPCA的航空发动机滑油滤磨屑图像识别 被引量:8
16
作者 孙丽萍 陈果 +1 位作者 陈立波 高绪伟 《机械科学与技术》 CSCD 北大核心 2010年第6期731-736,共6页
针对目前航空发动机滑油滤的检查仍处于目视定性检查水平,检查结果依赖人员的经验,既主观又无定量依据的现状,研究了基于图像识别的航空发动机滑油滤磨屑检测技术。首先构造了油滤图像检测硬件系统;然后提出了利用核主成分分析(kernel p... 针对目前航空发动机滑油滤的检查仍处于目视定性检查水平,检查结果依赖人员的经验,既主观又无定量依据的现状,研究了基于图像识别的航空发动机滑油滤磨屑检测技术。首先构造了油滤图像检测硬件系统;然后提出了利用核主成分分析(kernel principle component analysis,KP-CA)对滑油滤图像进行特征提取的方法;最后,利用实际采集的滑油滤图像进行了实例分析,并与普通的主成分分析(principle component analysis,PCA)方法进行比较。结果表明,KPCA方法可以更为有效地提取出滑油滤图像的磨损状态特征,能够有效地提高发动机磨损故障预报的准确率。 展开更多
关键词 航空发动机 核主成分分析(kpca) 滑油滤 特征提取 图像识别 磨损诊断
在线阅读 下载PDF
基于Grouplet-KPCA金属断口图像识别方法研究 被引量:6
17
作者 李志农 陈康 +1 位作者 闫敬文 杨艳春 《机械强度》 CAS CSCD 北大核心 2016年第1期1-5,共5页
Grouplet变换是一种崭新的方向性小波,可以在任意时间和空间上进行变换,拥有根据图像纹理结构自适应的改变基的能力,从而具有好的稀疏表示能力。基于此,将Grouplet变换引入到金属断口图像处理中,并结合核主成分分析(KPCA),提出了一种基... Grouplet变换是一种崭新的方向性小波,可以在任意时间和空间上进行变换,拥有根据图像纹理结构自适应的改变基的能力,从而具有好的稀疏表示能力。基于此,将Grouplet变换引入到金属断口图像处理中,并结合核主成分分析(KPCA),提出了一种基于Grouplet-KPCA的金属断口图像识别方法,同时,提出的方法与基于小波-KPCA方法进行对比。实验结果表明,提出的方法克服了小波-KPCA识别方法只能获取图像有限的方向信息,取得了更高的识别率。Grouplet峭度相比于Grouplet熵,Grouplet峭度对断口图像的纹理变化更敏感,特别适于金属断口的特征提取,因而,基于Grouplet峭度-KPCA的金属断口特征提取取得了比基于Grouplet熵-KPCA的金属断口特征提取更高的识别效果。 展开更多
关键词 Grouplet变换 核主成分分析(kpca) 金属断口 特征提取 模式识别
在线阅读 下载PDF
基于KPCA-SVC的复杂过程故障诊断 被引量:16
18
作者 刘爱伦 袁小艳 俞金寿 《仪器仪表学报》 EI CAS CSCD 北大核心 2007年第5期870-874,共5页
本文提出了一种将核主元分析方法与支持向量机分类相结合进行故障诊断的方法,运用该方法对连续搅拌釜式反应器(CSTR)进行实时的故障诊断,实验结果表明KPCA-SVC故障诊断方法既充分利用了KPCA的特征提取能力和SVC的良好的分类能力,又避免... 本文提出了一种将核主元分析方法与支持向量机分类相结合进行故障诊断的方法,运用该方法对连续搅拌釜式反应器(CSTR)进行实时的故障诊断,实验结果表明KPCA-SVC故障诊断方法既充分利用了KPCA的特征提取能力和SVC的良好的分类能力,又避免了复杂的计算,有利于提高故障诊断模型的实时性。 展开更多
关键词 核主元分析(kpca) 支持向量机分类(SVC) 故障诊断
在线阅读 下载PDF
基于KPCA的SBR过程监视 被引量:6
19
作者 樊立萍 于海斌 +1 位作者 袁德成 徐阳 《仪器仪表学报》 EI CAS CSCD 北大核心 2006年第3期249-253,共5页
序批式反应器生化污水处理系统(SBR)具有复杂的生化反应机理,其固有的严重非线性、持续时间有限、非稳态运行等给其过程监视带来特殊困难。核主元分析(KPCA)方法通过集成算子与非线性核函数计算高维特性空间的主元成分,有效捕捉过程变... 序批式反应器生化污水处理系统(SBR)具有复杂的生化反应机理,其固有的严重非线性、持续时间有限、非稳态运行等给其过程监视带来特殊困难。核主元分析(KPCA)方法通过集成算子与非线性核函数计算高维特性空间的主元成分,有效捕捉过程变量中的非线性关系。将KPCA技巧应用到序批式反应器生化污水处理系统,建立了基于KPCA的SBR污水处理过程在线监视策略。在监视暴风雨事件等典型的SBR过程异常状态时,统计指标变化灵敏,诊断及时。与线性PCA相比,显示出更高的过程监视性能。 展开更多
关键词 核主元分析(kpca) 序批式反应器(SBR) 生化污水处理 监视
在线阅读 下载PDF
基于KPCA和SVM的电梯故障诊断系统 被引量:6
20
作者 黄水霞 张广明 +1 位作者 邱春玲 黄凯 《机械设计与制造》 北大核心 2010年第1期196-198,共3页
针对电梯故障的非线性特性及故障特征不明显,传统方法分析后留下的显著成分不能反映这种非线性属性等问题,提出了核主元分析(KPCA)和支持向量机(SVM)相结合的故障诊断方法。利用KPCA在高维空间具有较强的特征选择能力和支持向量机具有... 针对电梯故障的非线性特性及故障特征不明显,传统方法分析后留下的显著成分不能反映这种非线性属性等问题,提出了核主元分析(KPCA)和支持向量机(SVM)相结合的故障诊断方法。利用KPCA在高维空间具有较强的特征选择能力和支持向量机具有较强的辨识率的特点,通过核主元分析法提取电梯故障特征,以达到降维作用,再利用支持向量机分类模型进行故障辨识。实验证明用此方法进行电梯的故障诊断具有更快更好的诊断效果。 展开更多
关键词 kpca SVM 故障诊断 电梯 故障辨识
在线阅读 下载PDF
上一页 1 2 21 下一页 到第
使用帮助 返回顶部