期刊文献+
共找到376篇文章
< 1 2 19 >
每页显示 20 50 100
基于主成分分析算法和K均值聚类算法的药品库存分类管理 被引量:1
1
作者 唐蕾 邱磊 +1 位作者 俞佳慧 冀召帅 《医药导报》 北大核心 2025年第4期682-686,共5页
目的针对目前药品分类主观性较强、分类标准模糊、影响因素繁杂的问题,探讨一种科学的药品分类方法,以降低库存成本,提高库存的有效性。方法在北京某三级医院2021—2022年历史数据中随机抽取700种药品为研究对象,通过主成分分析(PCA)算... 目的针对目前药品分类主观性较强、分类标准模糊、影响因素繁杂的问题,探讨一种科学的药品分类方法,以降低库存成本,提高库存的有效性。方法在北京某三级医院2021—2022年历史数据中随机抽取700种药品为研究对象,通过主成分分析(PCA)算法和K均值聚类(K-means)算法对研究对象进行分类。结果确定轮廓系数为0.3470的分类数4为最佳分类数,将700种药品分为4类,其中有363种归为第一类,186种归为第二类,94种归为第三类,57种归为第四类。将该文研究的药品分类方法模拟运用到某三级医院2023年第二季度的药品库存管理中,模拟结果表明该分类方法能够降低库存成本,提高库存有效性。结论基于PCA算法和K-means聚类算法的药品分类方法能够为药品库存分类管理提供可靠依据。 展开更多
关键词 药品分 主成分分析算法 k均值算法 药品库存管理
在线阅读 下载PDF
基于RSA模型和改进K-means算法的电商行业客户细分
2
作者 杨静 《计算机应用与软件》 北大核心 2025年第8期125-131,172,共8页
针对新兴的网络购物客户数量大、客户流动性强和消费数据多的特点,提出RSA模型结合改进的K-means聚类算法实现客户细分。采用熵值法计算RSA模型各指标的权重,综合各个属性计算客户价值。结合K近邻算法和密度峰值算法,提出一种基于K近邻... 针对新兴的网络购物客户数量大、客户流动性强和消费数据多的特点,提出RSA模型结合改进的K-means聚类算法实现客户细分。采用熵值法计算RSA模型各指标的权重,综合各个属性计算客户价值。结合K近邻算法和密度峰值算法,提出一种基于K近邻和密度峰值聚类的K-means初始聚类中心选取方法,优化传统K-means算法实现客户细分。通过选取的标准数据集和某零售公司在线交易的真实数据进行实验验证,证明了RSA模型和改进K-means算法具有更加优异的性能。 展开更多
关键词 RSA模型 客户细分 k-means算法 密度峰值 k近邻
在线阅读 下载PDF
基于自组织映射优化k均值聚类合成少数类算法及应用
3
作者 罗博炜 谭家驹 冯纪强 《广西大学学报(自然科学版)》 北大核心 2025年第3期679-689,共11页
针对金融数据高度不平衡使信贷违约预警模型训练和评估的复杂度大大增加的特点,为了改进重采样方法,运用自组织映射(SOM)神经网络来优化k均值聚类合成少数类(k-Means-SMOTE)算法,通过自组织映射神经网络识别和分析不平衡数据集的结构特... 针对金融数据高度不平衡使信贷违约预警模型训练和评估的复杂度大大增加的特点,为了改进重采样方法,运用自组织映射(SOM)神经网络来优化k均值聚类合成少数类(k-Means-SMOTE)算法,通过自组织映射神经网络识别和分析不平衡数据集的结构特征,将高维数据有效地映射至低维空间。在此基础上,结合k-Means算法进行数据聚类,以识别少数类样本的潜在群集,从而更准确地确定过采样的焦点区域。最后运用SMOTE技术对这些焦点区域进行过采样,增加少数类样本数量的同时保持数据的原始特征分布,从而减少过拟合的风险。在Bank marketing、Credit_Fraud等多个经典的真实金融数据集上的实验证明,该方法能够通过增加聚类稳定性来提升传统过采样算法的质量,在提升模型性能的同时降低算法复杂度。 展开更多
关键词 自组织映射神经网络 算法 k均值合成少数过采样方法 信贷违约预警
在线阅读 下载PDF
基于划分的数据挖掘K-means聚类算法分析 被引量:19
4
作者 曾俊 《现代电子技术》 北大核心 2020年第3期14-17,共4页
为提升数据挖掘中聚类分析的效果,在分析数据挖掘、聚类分析、传统K⁃means算法的基础上,提出一种改进的K⁃means算法。首先将整体数据集分为k类,然后设定一个密度参数为ϑ,该密度参数反映数据库中数据所处区域的密度大小,ϑ值与密度大小成... 为提升数据挖掘中聚类分析的效果,在分析数据挖掘、聚类分析、传统K⁃means算法的基础上,提出一种改进的K⁃means算法。首先将整体数据集分为k类,然后设定一个密度参数为ϑ,该密度参数反映数据库中数据所处区域的密度大小,ϑ值与密度大小成正比,通过密度参数优化k个样本数据的聚类中心点选取;依据欧几里得距离公式对未选取的其他数据到各个聚类中心之间的距离进行计算,同时以此距离为判别标准,对各个数据进行种类划分,从而得到初始的聚类分布;初始聚类分布得到之后,对每一个分布簇进行再一次的中心点计算,并判断与之前所取中心点是否相同,直到其聚类收敛达到最优效果。最后通过葡萄酒数据集对改进算法进行验证分析,改进算法比传统K⁃means算法的聚类效果更优,能够更好地在数据挖掘当中进行聚类。 展开更多
关键词 数据挖掘 分析 k⁃means聚类算法 中心选取 k⁃means算法改进 初始中心点
在线阅读 下载PDF
基于Tukey规则与初始中心点优化的K⁃means聚类改进算法 被引量:5
5
作者 柳菁 邱紫滢 +1 位作者 郭茂祖 余冬华 《数据采集与处理》 CSCD 北大核心 2023年第3期643-651,共9页
针对K⁃means聚类算法存在的初始中心点选择及异常点、离群点极易影响聚类结果等待改进问题,提出了一个基于Tukey规则与优化初始中心点选择的K⁃means改进算法。该算法利用Tukey规则构造核心与非核心子集,将聚类过程划分成2个阶段。同时,... 针对K⁃means聚类算法存在的初始中心点选择及异常点、离群点极易影响聚类结果等待改进问题,提出了一个基于Tukey规则与优化初始中心点选择的K⁃means改进算法。该算法利用Tukey规则构造核心与非核心子集,将聚类过程划分成2个阶段。同时,在核心子集上执行中心点逐个递增优化选择策略,选出初始中心点。在来自UCI的20个数据集上聚类结果表明,本文提出的算法优于K⁃means++聚类算法,有效地提升了聚类性能。 展开更多
关键词 数据挖掘 k⁃means聚类算法 Tukey规则 中心点优化
在线阅读 下载PDF
基于K聚类算法的露天矿微波网络参数优化
6
作者 张鹏姣 《中国矿业》 北大核心 2025年第S1期289-293,共5页
由于露天矿的电流聚集效应,使得不同区域的微波网络参数产生显著差异,造成微波信号在传输过程中的传输路径和角度出现偏差,导致通信信号频谱波动剧烈。因此,提出基于K聚类算法的露天矿微波网络参数优化方法。分析露天矿微波网络架构发... 由于露天矿的电流聚集效应,使得不同区域的微波网络参数产生显著差异,造成微波信号在传输过程中的传输路径和角度出现偏差,导致通信信号频谱波动剧烈。因此,提出基于K聚类算法的露天矿微波网络参数优化方法。分析露天矿微波网络架构发现优化信号波长、各终端站间的距离、天线高度等参数,构建数字微波通信主架构,计算调整终端站微波收发装置天线垂直距离,确保微波信号在传输过程中保持最佳的传输路径和角度。将露天矿不同区域微波网络各终端站间的距离、天线高度及信号波长作为待优化的参数集,利用K聚类算法对海量参数数据集进行聚类处理,通过欧氏距离确定不同参数间的距离,由此得到不同区域的最优参数结果。实验结果显示,不同的K值对聚类效果略有影响,当K值设定为4时,轮廓系数达到最高值,参数聚类结果最优;微波网络参数优化后,通信信号频谱平稳均匀,信号质量得到全面提升。 展开更多
关键词 k算法 露天矿 微波网络 参数优化 信号频率 微波通信
在线阅读 下载PDF
基于交通拥堵信息的高速公路拥堵路段ACK-Means聚类
7
作者 陈昕 阮永娇 肇毓 《科学技术与工程》 北大核心 2024年第21期9194-9200,共7页
为了充分利用实际高速公路路段交通拥堵信息,更合理地聚类交通拥堵的内在规律和特征变化,提出自适应确定聚类中心C和类别K值(adaptive center and K-means value,ACK-Means)的聚类算法,进行高速公路拥堵路段聚类。ACK-Means算法借助簇... 为了充分利用实际高速公路路段交通拥堵信息,更合理地聚类交通拥堵的内在规律和特征变化,提出自适应确定聚类中心C和类别K值(adaptive center and K-means value,ACK-Means)的聚类算法,进行高速公路拥堵路段聚类。ACK-Means算法借助簇类密度、簇类间距以及簇类强度,同时又考虑到数据样本的偶然性,对离群点进行合理分配,ACK-Means算法可实现自适应确定聚类中心C和类别K值。基于实际交通拥堵信息构建数据集,Python编程实现高速公路拥堵路段ACK-Means聚类,巧妙解决了高速公路拥堵路段聚类数目K和聚类中心C设定问题。聚类结果表明,ACK-Means算法实现高速公路拥堵路段无监督聚类,聚类结果完全基于实际的高速公路交通拥堵信息,具有更高的实用性。 展开更多
关键词 交通拥堵 ACk-means算法 自适应中心 自适应k 交通拥堵信息
在线阅读 下载PDF
K-means算法初始聚类中心选择的优化 被引量:51
8
作者 冯波 郝文宁 +1 位作者 陈刚 占栋辉 《计算机工程与应用》 CSCD 2013年第14期182-185,192,共5页
针对传统K-means算法对初始聚类中心敏感的问题,提出了基于数据样本分布情况的动态选取初始聚类中心的改进K-means算法。该算法根据数据点的距离构造最小生成树,并对最小生成树进行剪枝得到K个初始数据集合,得到初始的聚类中心。由此得... 针对传统K-means算法对初始聚类中心敏感的问题,提出了基于数据样本分布情况的动态选取初始聚类中心的改进K-means算法。该算法根据数据点的距离构造最小生成树,并对最小生成树进行剪枝得到K个初始数据集合,得到初始的聚类中心。由此得到的初始聚类中心非常地接近迭代聚类算法收敛的聚类中心。理论分析与实验表明,改进的K-means算法能改善算法的聚类性能,减少聚类的迭代次数,提高效率,并能得到稳定的聚类结果,取得较高的分类准确率。 展开更多
关键词 kmeans算法 初始中心 TDkM算法
在线阅读 下载PDF
基于最优划分的K-Means初始聚类中心选取算法 被引量:62
9
作者 张健沛 杨悦 +1 位作者 杨静 张泽宝 《系统仿真学报》 CAS CSCD 北大核心 2009年第9期2586-2590,共5页
针对传统K-Means算法聚类过程中,聚类数目k值难以准确预设和随机选取初始聚类中心造成聚类精度及效率降低等问题,提出一种基于最优划分的K-Means初始聚类中心选取算法,该算法利用直方图方法将数据样本空间进行最优划分,依据数据样本自... 针对传统K-Means算法聚类过程中,聚类数目k值难以准确预设和随机选取初始聚类中心造成聚类精度及效率降低等问题,提出一种基于最优划分的K-Means初始聚类中心选取算法,该算法利用直方图方法将数据样本空间进行最优划分,依据数据样本自身分布特点确定K-Means算法的初始聚类中心,无需预设k值,减少了算法结果对参数的依赖,提高算法运算效率及准确率。实验结果表明,利用该算法改进的K-Means算法,运算时间明显减少,其聚类结果准确率以及算法效率均得到显著提高。 展开更多
关键词 kmeans算法 初始中心 直方图 最优划分方法
在线阅读 下载PDF
初始中心优化的K-Means聚类算法 被引量:47
10
作者 李飞 薛彬 黄亚楼 《计算机科学》 CSCD 北大核心 2002年第7期94-96,共3页
1.引言 聚类分析(clustering)是人工智能研究的重要领域.聚类方法被广泛研究并应用于机器学习、统计分析、模式识别以及数据库数据挖掘与知识发现等不同的领域.
关键词 遗传算法 随机全局优化搜索算法 kmeans算法 初始中心 优化
在线阅读 下载PDF
优化初始聚类中心的改进k-means算法 被引量:58
11
作者 张靖 段富 《计算机工程与设计》 CSCD 北大核心 2013年第5期1691-1694,1699,共5页
传统k-means算法随机选取初始聚类中心使聚类结果不稳定,诸多优化算法的时间复杂度较高,为了提高聚类稳定性并降低时间复杂度,提出了基于个体轮廓系数自适应地选取优秀样本以确定初始聚类中心的改进k-means算法。该算法多次调用传统k-me... 传统k-means算法随机选取初始聚类中心使聚类结果不稳定,诸多优化算法的时间复杂度较高,为了提高聚类稳定性并降低时间复杂度,提出了基于个体轮廓系数自适应地选取优秀样本以确定初始聚类中心的改进k-means算法。该算法多次调用传统k-means算法聚类,根据k个类中心的个体轮廓系数以及各样本与类中心的距离,自适应地选取优秀样本,求其均值作为初始聚类中心。在多个UCI数据集上的实验表明,该算法聚类时间短,具有较高的轮廓系数和准确率。 展开更多
关键词 k均值算法 初始中心 个体轮廓系数 自适应
在线阅读 下载PDF
模糊K-Harmonic Means聚类算法 被引量:6
12
作者 赵恒 杨万海 张高煜 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2005年第4期603-606,638,共5页
对K-HarmonicMeans算法进行扩展,考虑到数据点对不同类的隶属关系,将模糊的概念应用到聚类中,提出了模糊K-HarmonicMeans算法,推导出聚类中心和模糊隶属度的迭代公式.在中心迭代聚类算法统一框架的基础上,推导出FKHM算法聚类中心的条件... 对K-HarmonicMeans算法进行扩展,考虑到数据点对不同类的隶属关系,将模糊的概念应用到聚类中,提出了模糊K-HarmonicMeans算法,推导出聚类中心和模糊隶属度的迭代公式.在中心迭代聚类算法统一框架的基础上,推导出FKHM算法聚类中心的条件概率表达式以及在迭代过程中的数据加权函数表达式.最后,用Folkes&Mallows指标对聚类结果进行评价.实验表明,模糊K-HarmonicMeans(KHM)算法在聚类对于初值不敏感的同时提高了聚类结果的精确度,达到较好的聚类效果. 展开更多
关键词 模糊k—Harmonic means 中心 条件概率 Folkes & Mallows指标
在线阅读 下载PDF
基于初始聚类中心优化和维间加权的改进K-means算法 被引量:7
13
作者 王越 王泉 +1 位作者 吕奇峰 曾晶 《重庆理工大学学报(自然科学)》 CAS 2013年第4期77-80,共4页
针对K-means算法易受随机选择的初始聚类中心的影响和划分准确率不高的缺点,给出了一种改进的K-means算法。首先对初始聚类中心的选择过程进行了改进,然后对各样本点间差异最大的维进行加权处理。在Iris数据集上对原始算法和改进后的K-m... 针对K-means算法易受随机选择的初始聚类中心的影响和划分准确率不高的缺点,给出了一种改进的K-means算法。首先对初始聚类中心的选择过程进行了改进,然后对各样本点间差异最大的维进行加权处理。在Iris数据集上对原始算法和改进后的K-means算法的聚类结果进行对比分析。实验证明:改进后的算法稳定,且聚类的准确率达到了92%。 展开更多
关键词 kmeans算法 初始中心 维间加权 Iris数据集
在线阅读 下载PDF
K-means聚类算法的研究 被引量:48
14
作者 韩晓红 胡彧 《太原理工大学学报》 CAS 北大核心 2009年第3期236-239,共4页
为解决原始K-means算法随机选取初始聚类中心对聚类结果的影响较大的不足,提出了改进算法。采取基于采样选取聚类中心距离的规则,进行多次选择决定最终的初始聚类中心,使得改进后的算法受初始聚类中心选择的影响达到最小;同时,在选取初... 为解决原始K-means算法随机选取初始聚类中心对聚类结果的影响较大的不足,提出了改进算法。采取基于采样选取聚类中心距离的规则,进行多次选择决定最终的初始聚类中心,使得改进后的算法受初始聚类中心选择的影响达到最小;同时,在选取初始聚类中心后,对初值进行数据标准化处理。将改进的K-means算法应用于销售行业,结果显示,改进后的算法比原始的算法在效率上得到了提高。 展开更多
关键词 数据挖掘 kmeans算法 初始中心 分析
在线阅读 下载PDF
基于初始中心优化的遗传K-means聚类新算法 被引量:17
15
作者 孙秀娟 刘希玉 《计算机工程与应用》 CSCD 北大核心 2008年第23期166-168,182,共4页
一个好的K-means聚类算法至少要满足两个要求:(1)能反映聚类的有效性,即所分类别数要与实际问题相符;(2)具有处理噪声数据的能力。传统的K-means算法是一种局部搜索算法,存在着对初始化敏感和容易陷入局部极值的缺点。针对此缺点,提出... 一个好的K-means聚类算法至少要满足两个要求:(1)能反映聚类的有效性,即所分类别数要与实际问题相符;(2)具有处理噪声数据的能力。传统的K-means算法是一种局部搜索算法,存在着对初始化敏感和容易陷入局部极值的缺点。针对此缺点,提出了一种优化初始中心的K-means算法,该算法选择相距最远的处于高密度区域的k个数据对象作为初始聚类中心。实验表明该算法不仅具有对初始数据的弱依赖性,而且具有收敛快,聚类质量高的特点。为体现聚类的有效性,获得更高精度的聚类结果,提出了将优化的K-means算法(PKM)和遗传算法相结合的混合算法(PGKM),该算法在提高紧凑度(类内距)和分离度(类间距)的同时自动搜索最佳聚类数k,对k个初始中心优化后再聚类,不断地循环迭代,得到满足终止条件的最优聚类。实验证明该算法具有更好的聚类质量和综合性能。 展开更多
关键词 kmeans算法 遗传算法
在线阅读 下载PDF
基于形状相似距离的K-means聚类算法 被引量:9
16
作者 苑津莎 李中 《华北电力大学学报(自然科学版)》 CAS 北大核心 2009年第6期98-103,共6页
把向量作为空间中的物体展开相似度的评估,分析了向量间各维差值与形状差异的间的近似关系,提出了基于形状相似距离的K-means算法。在三个UCI(University of California,Irvine)标准数据集上的聚类结果表明,对于有关形状信息的数据,基... 把向量作为空间中的物体展开相似度的评估,分析了向量间各维差值与形状差异的间的近似关系,提出了基于形状相似距离的K-means算法。在三个UCI(University of California,Irvine)标准数据集上的聚类结果表明,对于有关形状信息的数据,基于形状相似距离的K-means算法比采用传统距离的K-means算法,聚类准确度显著提高。 展开更多
关键词 kmeans算法 相似度 距离 形状
在线阅读 下载PDF
K-means聚类与SVDD结合的新的分类算法 被引量:7
17
作者 刘艳红 薛安荣 史习云 《计算机应用研究》 CSCD 北大核心 2010年第3期883-886,共4页
为了提高支持向量数据描述(SVDD)的分类精度,引入局部疏密度提出了改进的SVDD算法。该算法提高了分类精度,但增加了计算复杂度。为此,先用K-means聚类将整个数据集划分为k个簇,再用改进的SVDD算法并行训练k个簇,最后再对获得的k个局部... 为了提高支持向量数据描述(SVDD)的分类精度,引入局部疏密度提出了改进的SVDD算法。该算法提高了分类精度,但增加了计算复杂度。为此,先用K-means聚类将整个数据集划分为k个簇,再用改进的SVDD算法并行训练k个簇,最后再对获得的k个局部支持向量集训练,即得到最终的全局决策边界。由于采用了分而治之并行计算的方法,提高了算法的效率。对合成数据(200个)和实际数据的实验结果表明,所提算法较SVDD算法,训练时间降低为原来的10%,分类错误率较原来的降低了近一半。因此,所提算法提高了分类精度和算法效率。 展开更多
关键词 单值分 支持向量数据描述 kmeans 局部疏密度
在线阅读 下载PDF
基于聚类数和初始值的K-means算法改进研究 被引量:6
18
作者 屈新怀 高万里 +1 位作者 丁必荣 李朕 《组合机床与自动化加工技术》 北大核心 2011年第4期42-46,共5页
原始的K-means算法,随机生成初始质心,事先给定聚类数k,在该前提下进行聚类,大大降低了聚类的效果。文章是对原始K-means算法的改进,提出了一种基于密度选取初始质心和采取遗传算法优化聚类数k的算法。该算法在一定程度上解决了初始质... 原始的K-means算法,随机生成初始质心,事先给定聚类数k,在该前提下进行聚类,大大降低了聚类的效果。文章是对原始K-means算法的改进,提出了一种基于密度选取初始质心和采取遗传算法优化聚类数k的算法。该算法在一定程度上解决了初始质心和聚类数k对聚类精度和效率的影响,提高了聚类的准确率。最后文章通过实验证明了改进算法的有效性。 展开更多
关键词 k-means算法 初始质心 k
在线阅读 下载PDF
可间断运行的K-means聚类算法 被引量:3
19
作者 黄志华 温步瀛 王国乾 《计算机应用研究》 CSCD 北大核心 2009年第6期2053-2055,2069,共4页
引入事务的恢复机制改进K-means算法,改进后的算法允许在运行过程中的任何时刻停机,重新启动后可在停机前运算成果的基础上继续运算,直至算法结束。改进后的算法使得普通机器条件下针对大数据集运用K-means算法成为可能。改进后的算法... 引入事务的恢复机制改进K-means算法,改进后的算法允许在运行过程中的任何时刻停机,重新启动后可在停机前运算成果的基础上继续运算,直至算法结束。改进后的算法使得普通机器条件下针对大数据集运用K-means算法成为可能。改进后的算法在长达400 h的聚类运算中得到了检验。 展开更多
关键词 kmeans算法 恢复机制
在线阅读 下载PDF
基于改进K-means聚类和量子粒子群算法的多航迹规划 被引量:5
20
作者 董阳 王瑾 柏鹏 《电讯技术》 北大核心 2014年第9期1249-1253,共5页
针对在复杂环境下需要通过多航迹规划以实现武器协同的问题,利用排挤机制产生Kmeans聚类的初始聚类中心,并将改进K-means聚类与量子粒子群算法(QPSO)相结合应用于无人机的三维多航迹规划。改进算法解决了K-means聚类易陷入局部最优、聚... 针对在复杂环境下需要通过多航迹规划以实现武器协同的问题,利用排挤机制产生Kmeans聚类的初始聚类中心,并将改进K-means聚类与量子粒子群算法(QPSO)相结合应用于无人机的三维多航迹规划。改进算法解决了K-means聚类易陷入局部最优、聚类准确率低的问题。根据产生的初始聚类中心,将粒子划分成多个子种群,利用QPSO算法对每个子种群进行优化,使得每个子种群可以产生一条可行航迹。仿真分析证明了改进算法可以有效保证子种群之间的多样性,生成较为分散的多条可行航迹。 展开更多
关键词 无人机 多航迹规划 排挤机制 量子粒子群优化 kmeans
在线阅读 下载PDF
上一页 1 2 19 下一页 到第
使用帮助 返回顶部