A dynamic parallel forecasting model is proposed, which is based on the problem of current forecasting models and their combined model. According to the process of the model, the fuzzy C-means clustering algorithm is ...A dynamic parallel forecasting model is proposed, which is based on the problem of current forecasting models and their combined model. According to the process of the model, the fuzzy C-means clustering algorithm is improved in outliers operation and distance in the clusters and among the clusters. Firstly, the input data sets are optimized and their coherence is ensured, the region scale algorithm is modified and non-isometric multi scale region fuzzy time series model is built. At the same time, the particle swarm optimization algorithm about the particle speed, location and inertia weight value is improved, this method is used to optimize the parameters of support vector machine, construct the combined forecast model, build the dynamic parallel forecast model, and calculate the dynamic weight values and regard the product of the weight value and forecast value to be the final forecast values. At last, the example shows the improved forecast model is effective and accurate.展开更多
Input variables selection(IVS) is proved to be pivotal in nonlinear dynamic system modeling. In order to optimize the model of the nonlinear dynamic system, a fuzzy modeling method for determining the premise structur...Input variables selection(IVS) is proved to be pivotal in nonlinear dynamic system modeling. In order to optimize the model of the nonlinear dynamic system, a fuzzy modeling method for determining the premise structure by selecting important inputs of the system is studied. Firstly, a simplified two stage fuzzy curves method is proposed, which is employed to sort all possible inputs by their relevance with outputs, select the important input variables of the system and identify the structure.Secondly, in order to reduce the complexity of the model, the standard fuzzy c-means clustering algorithm and the recursive least squares algorithm are used to identify the premise parameters and conclusion parameters, respectively. Then, the effectiveness of IVS is verified by two well-known issues. Finally, the proposed identification method is applied to a realistic variable load pneumatic system. The simulation experiments indi cate that the IVS method in this paper has a positive influence on the approximation performance of the Takagi-Sugeno(T-S) fuzzy modeling.展开更多
提出了一种基于DI-FCM(double indices fuzzy C-means)算法框架的无监督距离学习算法——基于混合距离学习的双指数模糊C均值算法HDDI-FCM(double indices fuzzy C-m eans with hybrid distance).数据集未知距离度量被表示为若干已有距...提出了一种基于DI-FCM(double indices fuzzy C-means)算法框架的无监督距离学习算法——基于混合距离学习的双指数模糊C均值算法HDDI-FCM(double indices fuzzy C-m eans with hybrid distance).数据集未知距离度量被表示为若干已有距离的线性组合,然后执行HDDI-FCM,在对数据集进行有效聚类的同时进行距离学习.为了保证迭代算法收敛,引入了Steffensen迭代法来改进计算簇中心点的迭代公式.讨论了算法中参数的选择.基于UCI(University of California,Irvine)数据集的实验结果表明该算法是有效的.展开更多
基金supported by the National Defense Preliminary Research Program of China(A157167)the National Defense Fundamental of China(9140A19030314JB35275)
文摘A dynamic parallel forecasting model is proposed, which is based on the problem of current forecasting models and their combined model. According to the process of the model, the fuzzy C-means clustering algorithm is improved in outliers operation and distance in the clusters and among the clusters. Firstly, the input data sets are optimized and their coherence is ensured, the region scale algorithm is modified and non-isometric multi scale region fuzzy time series model is built. At the same time, the particle swarm optimization algorithm about the particle speed, location and inertia weight value is improved, this method is used to optimize the parameters of support vector machine, construct the combined forecast model, build the dynamic parallel forecast model, and calculate the dynamic weight values and regard the product of the weight value and forecast value to be the final forecast values. At last, the example shows the improved forecast model is effective and accurate.
基金This work was supported by the Natural Science Foundation of Hebei Province(F2019203505).
文摘Input variables selection(IVS) is proved to be pivotal in nonlinear dynamic system modeling. In order to optimize the model of the nonlinear dynamic system, a fuzzy modeling method for determining the premise structure by selecting important inputs of the system is studied. Firstly, a simplified two stage fuzzy curves method is proposed, which is employed to sort all possible inputs by their relevance with outputs, select the important input variables of the system and identify the structure.Secondly, in order to reduce the complexity of the model, the standard fuzzy c-means clustering algorithm and the recursive least squares algorithm are used to identify the premise parameters and conclusion parameters, respectively. Then, the effectiveness of IVS is verified by two well-known issues. Finally, the proposed identification method is applied to a realistic variable load pneumatic system. The simulation experiments indi cate that the IVS method in this paper has a positive influence on the approximation performance of the Takagi-Sugeno(T-S) fuzzy modeling.
文摘提出了一种基于DI-FCM(double indices fuzzy C-means)算法框架的无监督距离学习算法——基于混合距离学习的双指数模糊C均值算法HDDI-FCM(double indices fuzzy C-m eans with hybrid distance).数据集未知距离度量被表示为若干已有距离的线性组合,然后执行HDDI-FCM,在对数据集进行有效聚类的同时进行距离学习.为了保证迭代算法收敛,引入了Steffensen迭代法来改进计算簇中心点的迭代公式.讨论了算法中参数的选择.基于UCI(University of California,Irvine)数据集的实验结果表明该算法是有效的.