期刊文献+
共找到373篇文章
< 1 2 19 >
每页显示 20 50 100
Solving Job-Shop Scheduling Problem Based on Improved Adaptive Particle Swarm Optimization Algorithm 被引量:3
1
作者 顾文斌 唐敦兵 郑堃 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2014年第5期559-567,共9页
An improved adaptive particle swarm optimization(IAPSO)algorithm is presented for solving the minimum makespan problem of job shop scheduling problem(JSP).Inspired by hormone modulation mechanism,an adaptive hormonal ... An improved adaptive particle swarm optimization(IAPSO)algorithm is presented for solving the minimum makespan problem of job shop scheduling problem(JSP).Inspired by hormone modulation mechanism,an adaptive hormonal factor(HF),composed of an adaptive local hormonal factor(H l)and an adaptive global hormonal factor(H g),is devised to strengthen the information connection between particles.Using HF,each particle of the swarm can adjust its position self-adaptively to avoid premature phenomena and reach better solution.The computational results validate the effectiveness and stability of the proposed IAPSO,which can not only find optimal or close-to-optimal solutions but also obtain both better and more stability results than the existing particle swarm optimization(PSO)algorithms. 展开更多
关键词 job-shop scheduling problem(JSP) hormone modulation mechanism improved adaptive particle swarm optimization(IAPSO) algorithm minimum makespan
在线阅读 下载PDF
Improved Particle Swarm Optimization for Solving Transient Nonlinear Inverse Heat Conduction Problem in Complex Structure 被引量:1
2
作者 ZHOU Ling ZHANG Chunyun +2 位作者 BAI Yushuai LIU Kun CUI Miao 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2021年第5期816-828,共13页
Accurately solving transient nonlinear inverse heat conduction problems in complex structures is of great importance to provide key parameters for modeling coupled heat transfer process and the structure’s optimizati... Accurately solving transient nonlinear inverse heat conduction problems in complex structures is of great importance to provide key parameters for modeling coupled heat transfer process and the structure’s optimization design.The finite element method in ABAQUS is employed to solve the direct transient nonlinear heat conduction problem.Improved particle swarm optimization(PSO)method is developed and used to solve the transient nonlinear inverse problem.To investigate the inverse performances,some numerical tests are provided.Boundary conditions at inaccessible surfaces of a scramjet combustor with the regenerative cooling system are inversely identified.The results show that the new methodology can accurately and efficiently determine the boundary conditions in the scramjet combustor with the regenerative cooling system.By solving the transient nonlinear inverse problem,the improved particle swarm optimization for solving the transient nonlinear inverse heat conduction problem in a complex structure is verified. 展开更多
关键词 improved particle swarm optimization transient nonlinear heat conduction problem inverse identification finite element method complex structure
在线阅读 下载PDF
Angular insensitive nonreciprocal ultrawide band absorption in plasma-embedded photonic crystals designed with improved particle swarm optimization algorithm
3
作者 王奕涵 章海锋 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第4期352-363,共12页
Using an improved particle swarm optimization algorithm(IPSO)to drive a transfer matrix method,a nonreciprocal absorber with an ultrawide absorption bandwidth and angular insensitivity is realized in plasma-embedded p... Using an improved particle swarm optimization algorithm(IPSO)to drive a transfer matrix method,a nonreciprocal absorber with an ultrawide absorption bandwidth and angular insensitivity is realized in plasma-embedded photonic crystals arranged in a structure composed of periodic and quasi-periodic sequences on a normalized scale.The effective dielectric function,which determines the absorption of the plasma,is subject to the basic parameters of the plasma,causing the absorption of the proposed absorber to be easily modulated by these parameters.Compared with other quasi-periodic sequences,the Octonacci sequence is superior both in relative bandwidth and absolute bandwidth.Under further optimization using IPSO with 14 parameters set to be optimized,the absorption characteristics of the proposed structure with different numbers of layers of the smallest structure unit N are shown and discussed.IPSO is also used to address angular insensitive nonreciprocal ultrawide bandwidth absorption,and the optimized result shows excellent unidirectional absorbability and angular insensitivity of the proposed structure.The impacts of the sequence number of quasi-periodic sequence M and collision frequency of plasma1ν1 to absorption in the angle domain and frequency domain are investigated.Additionally,the impedance match theory and the interference field theory are introduced to express the findings of the algorithm. 展开更多
关键词 magnetized plasma photonic crystals improved particle swarm optimization algorithm nonreciprocal ultra-wide band absorption angular insensitivity
在线阅读 下载PDF
Multi-target Collaborative Combat Decision-Making by Improved Particle Swarm Optimizer 被引量:6
4
作者 Ding Yongfei Yang Liuqing +2 位作者 Hou Jianyong Jin Guting Zhen Ziyang 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2018年第1期181-187,共7页
A decision-making problem of missile-target assignment with a novel particle swarm optimization algorithm is proposed when it comes to a multiple target collaborative combat situation.The threat function is establishe... A decision-making problem of missile-target assignment with a novel particle swarm optimization algorithm is proposed when it comes to a multiple target collaborative combat situation.The threat function is established to describe air combat situation.Optimization function is used to find an optimal missile-target assignment.An improved particle swarm optimization algorithm is utilized to figure out the optimization function with less parameters,which is based on the adaptive random learning approach.According to the coordinated attack tactics,there are some adjustments to the assignment.Simulation example results show that it is an effective algorithm to handle with the decision-making problem of the missile-target assignment(MTA)in air combat. 展开更多
关键词 collaborative combat multi-target decision-making improved particle swarm optimization(ipso)
在线阅读 下载PDF
基于IPSO-LSTM的井下动目标位置预测实验研究
5
作者 王红尧 房彦旭 +3 位作者 吴钰晶 吉正平 赫海全 鲜旭红 《矿业科学学报》 CSCD 北大核心 2024年第3期393-403,共11页
提升井下人员定位精度能够加强矿山安全监测,最大程度保障井下人员的生命安全。针对现有测距类算法受现场环境影响致使定位精度不足的问题,提出一种基于IPSO-LSTM的定位模型,应用于井下动目标的位置预测。采用LSTM构建指纹定位模型,通过... 提升井下人员定位精度能够加强矿山安全监测,最大程度保障井下人员的生命安全。针对现有测距类算法受现场环境影响致使定位精度不足的问题,提出一种基于IPSO-LSTM的定位模型,应用于井下动目标的位置预测。采用LSTM构建指纹定位模型,通过UWB无线模块采集距离信息以构建距离-位置指纹关系数据库,利用数据库对PSO-LSTM模型进行训练,最后将训练好的模型进行目标轨迹预测。为比较不同改进策略对PSO的提升效果,对比了混沌映射随机初始化种群位置、非线性惯性权重递减、非对称优化学习因子和适应度函数优化4种改进策略,实验证明改进的PSO优化算法收敛速度快、鲁棒性好。为验证IPSO-LSTM的定位效果,以平均定位误差作为评价指标,将IPSO-LSTM模型与Chan算法、PSO-LSTM模型、LSTM神经网络、SSA-LSTM模型和GWO-LSTM进行对比,结果显示,IPSO-LSTM定位模型的平均定位误差为30 mm,相对传统Chan算法、LSTM、PSO-LSTM模型分别提升了76%、49%、24%。为降低局部误差偏大的现象,采用中值滤波对输入信息处理,进一步提升了定位精度。研究对进一步提高现有井下动目标定位系统的精度和稳定性具有重要意义和参考价值。 展开更多
关键词 井下动目标 改进的粒子群优化算法 ipso-LSTM模型 平均定位误差
在线阅读 下载PDF
基于IPSO-Elman的气液两相流含气率测量方法
6
作者 仝卫国 李茂冉 +1 位作者 石宗锦 寇德龙 《中国测试》 CAS 北大核心 2024年第7期26-32,62,共8页
为安全且非侵入式地测量气液两相流含气率,提出一种电阻层析成像(ERT)陈列电阻与Elman神经网络相结合的含气率测量方法。首先,为加快模型训练速度并避免数据冗余,使用主成分分析(PCA)算法对120维的阵列电阻特征降维。然后,在粒子群(PSO... 为安全且非侵入式地测量气液两相流含气率,提出一种电阻层析成像(ERT)陈列电阻与Elman神经网络相结合的含气率测量方法。首先,为加快模型训练速度并避免数据冗余,使用主成分分析(PCA)算法对120维的阵列电阻特征降维。然后,在粒子群(PSO)算法中引入自适应惯性权重和非线性学习因子,并加入遗传算法(GA)的交叉和变异行为以加快算法收敛速度。最后,通过改进的粒子群(IPSO)算法优化Elman神经网络初始权值和阈值,并建立含气率测量模型。经对比实验发现,PCA-IPSO-Elman含气率测量模型的平均绝对百分比误差为2.92%,且训练时间较IPSO-Elman模型减少68.8%。说明所提方法可以达到预期的测量效果。 展开更多
关键词 气液两相流 截面含气率 改进粒子群 ELMAN神经网络 阵列电阻值
在线阅读 下载PDF
Improved Bacterial Foraging Optimization Algorithm Based on Fuzzy Control Rule Base
7
作者 Cui-Cui Du Xu-Gang Feng Jia-Yan Zhang 《Journal of Electronic Science and Technology》 CAS CSCD 2017年第3期283-288,共6页
Manual construction of a rule base for a fuzzy system is the hard and time-consuming task that requires expert knowledge.In this paper we proposed a method based on improved bacterial foraging optimization(IBFO),whi... Manual construction of a rule base for a fuzzy system is the hard and time-consuming task that requires expert knowledge.In this paper we proposed a method based on improved bacterial foraging optimization(IBFO),which simulates the foraging behavior of “E.coli” bacterium,to tune the Gaussian membership functions parameters of an improved Takagi-Sugeno-Kang fuzzy system(C-ITSKFS) rule base.To remove the defect of the low rate of convergence and prematurity,three modifications were produced to the standard bacterial foraging optimization(BFO).As for the low accuracy of finding out all optimal solutions with multi-method functions,the IBFO was performed.In order to demonstrate the performance of the proposed IBFO,multiple comparisons were made among the BFO,particle swarm optimization(PSO),and IBFO by MATLAB simulation.The simulation results show that the IBFO has a superior performance. 展开更多
关键词 Index Terms--Fuzzy control system Gaussian membership functions improved bacterial foraging optimization (IBFO) particle swarm optimization (PSO)
在线阅读 下载PDF
大坝运行安全在线监控IPSO-LSTM模型研究
8
作者 戴霈霖 李艳玲 周子玉 《人民长江》 北大核心 2024年第12期229-236,共8页
构建合理在线监控模型是实时掌控大坝安全性态的重要保障。针对LSTM模型受多参数组合影响、最优参数泛化能力弱、人工选取参数难的问题,深入分析了学习率、分块尺寸、最大迭代次数和隐藏层单元数等关键参数对大坝安全在线监控模型精度... 构建合理在线监控模型是实时掌控大坝安全性态的重要保障。针对LSTM模型受多参数组合影响、最优参数泛化能力弱、人工选取参数难的问题,深入分析了学习率、分块尺寸、最大迭代次数和隐藏层单元数等关键参数对大坝安全在线监控模型精度的影响规律,提出了融合非线性惯性权重、收缩因子及柯西扰动项的粒子群优化改进算法(IPSO),并与LSTM模型耦合构建了针对大坝安全监控的IPSO-LSTM模型。工程校验表明:该模型能自动搜寻最优参数、精度高、鲁棒性强,适用于不同类型、不同长度的大坝安全监测数据序列,相对人工定参的LSTM模型误差至少能降低30%。相关经验可为大坝运行安全在线监控提供技术支持。 展开更多
关键词 大坝安全 监控模型 粒子群优化改进算法(ipso) 长短时神经网络(LSTM) 自动寻优
在线阅读 下载PDF
基于IPSO-DBSCAN的抽水蓄能机组状态监测数据异常检测方法
9
作者 张金鹏 张孝远 《水电能源科学》 北大核心 2024年第2期152-156,共5页
抽水蓄能机组状态监测数据受采集设备故障、通信设备异常等因素影响,数据集中存在部分异常数据,对后续机组健康状态评估及预测造成不利影响。为此,提出了一种基于改进粒子群优化算法和DBSCAN密度聚类算法的机组异常数据检测模型,模型针... 抽水蓄能机组状态监测数据受采集设备故障、通信设备异常等因素影响,数据集中存在部分异常数据,对后续机组健康状态评估及预测造成不利影响。为此,提出了一种基于改进粒子群优化算法和DBSCAN密度聚类算法的机组异常数据检测模型,模型针对粒子群算法易陷入局部最优解的问题对算法进行改进,之后引入轮廓系数作为适应度函数对DBSCAN的参数进行寻优,最后以相关系数评价异常值剔除的效果。对国内某抽水蓄能机组2020年2月初~3月末实测导叶开度、有功功率及下机架振动数据的实例分析结果表明,所提方法能够有效检测出机组振动监测异常数据,剔除异常值后的数据相关系数得到提高,可为后续机组健康状态评估与预测奠定数据基础。 展开更多
关键词 抽水蓄能 异常值检测 改进粒子群优化算法 DBSCAN
在线阅读 下载PDF
遮光条件下基于IPSO-FLC的光伏MPPT控制
10
作者 樊立萍 姚凌颖 《现代电子技术》 北大核心 2024年第22期77-82,共6页
光伏阵列在部分遮光条件下的P-U特性曲线会呈现多峰问题,致使跟踪算法变得更加复杂,而传统的MPPT算法可能会陷入局部最大功率点,导致对全局最大功率点的跟踪无法实现。为此,提出一种改进粒子群算法优化模糊控制器,来实现遮光条件下的光... 光伏阵列在部分遮光条件下的P-U特性曲线会呈现多峰问题,致使跟踪算法变得更加复杂,而传统的MPPT算法可能会陷入局部最大功率点,导致对全局最大功率点的跟踪无法实现。为此,提出一种改进粒子群算法优化模糊控制器,来实现遮光条件下的光伏阵列最大功率点跟踪。在Matlab/Simulink环境下,对光伏系统和所提出的MPPT算法进行仿真,同时与扰动观测法等传统MPPT算法进行比较。仿真结果表明,所提方法能够有效地跟踪光伏阵列的最大功率点,并且具有较快的响应速度。 展开更多
关键词 光伏阵列 MPPT 部分遮光 模糊控制器 改进粒子群算法 扰动观测法
在线阅读 下载PDF
基于改进粒子群算法的光伏逆变器控制参数辨识
11
作者 罗建 孙越 江丽娟 《河南理工大学学报(自然科学版)》 CAS 北大核心 2025年第1期124-133,共10页
精准的光伏并网逆变器模型是研究大规模光伏接入下电力系统故障特性的重要工具。目的为了解决现有光伏逆变器仿真模型与实际工作中的光伏逆变器特性相差较大的问题,方法提出采用参数辨识的方法构建逆变器的辨识模型。以重庆云阳某1 MW... 精准的光伏并网逆变器模型是研究大规模光伏接入下电力系统故障特性的重要工具。目的为了解决现有光伏逆变器仿真模型与实际工作中的光伏逆变器特性相差较大的问题,方法提出采用参数辨识的方法构建逆变器的辨识模型。以重庆云阳某1 MW光伏电站为实际参照模型,首先根据实际工作情况将逆变器的工作区间划分为3个阶段,利用数学扰动法分别对3个阶段中的待辨识参数划分灵敏度高低等级,并由此提出不同阶段不同灵敏度参数分步辨识策略;其次,分阶段采集实际光伏电站工作数据,对该数据进行分析处理,获得各待辨识参数的初始取值范围,设计同步辨识参数实验作为参照;最后提出改进的混沌遗传粒子群优化算法(chaos genetic algorithm of particle swarm optimization,CGAPSO)作为辨识算法,分步分工作阶段辨识相关参数,通过对比参数的同步辨识结果,验证所提方法的优越性,并将辨识结果代入仿真模型。结果结果表明,低灵敏度参数的同步辨识结果误差远超过可接受范围,而CGAPSO分步辨识出的相关参数误差皆在1.1%以下,精度远高于同步辨识结果。结论基于改进粒子群算法构建的辨识模型输出数据与实际逆变器工作数据契合度高,可准确反映逆变器实际工作特性。 展开更多
关键词 光伏并网逆变器 逆变器控制策略 参数辨识 数学扰动法 改进粒子群优化算法
在线阅读 下载PDF
基于改进多目标粒子群算法的码头结构传感器优化布置
12
作者 周鹏飞 张雍 《振动与冲击》 北大核心 2025年第1期243-251,共9页
为解决码头结构健康监测领域的传感器优化布置问题,提出了一种基于改进多目标粒子群(IMOPSO)的传感器优化布置算法。针对传统方法寻优效率低、优化目标单一,难以同时满足模态识别、损伤识别等复杂的健康监测需求的问题,构建了以损伤敏... 为解决码头结构健康监测领域的传感器优化布置问题,提出了一种基于改进多目标粒子群(IMOPSO)的传感器优化布置算法。针对传统方法寻优效率低、优化目标单一,难以同时满足模态识别、损伤识别等复杂的健康监测需求的问题,构建了以损伤敏感性和冗余性、损伤识别不适定性以及模态线性独立性的多目标优化函数;改进多目标粒子群算法获取Pareto解集,利用TOPSIS熵权法确定最优传感器布置方案。在某高桩码头试验表明:与有效独立法和有效独立-模态动能法相比,IMOPSO得到的布设方案测点分布更均匀,在灵敏度矩阵条件数、MAC最大非对角元、损伤冗余性指标分别优化了45%、90%、5%以上;多种工况下的损伤位置和程度识别准确率在不同噪声下平均提高5%和7%以上。 展开更多
关键词 码头结构健康监测 传感器优化布置 损伤识别 改进多目标粒子群(IMOPSO)
在线阅读 下载PDF
基于IPSO-BP的风电机组齿轮箱状态监测研究 被引量:13
13
作者 郭鹏 李淋淋 马登昌 《太阳能学报》 EI CAS CSCD 北大核心 2012年第3期439-445,共7页
将改进粒子群算法(IPSO)与BP神经网络相结合,建立齿轮箱正常工作状态下的温度模型并用其进行温度预测。通过合理地选择训练样本,使IPSO-BP模型覆盖齿轮箱的正常工作空间。当齿轮箱工作异常时,其动态特性偏离正常工作空间,导致IPSO-BP网... 将改进粒子群算法(IPSO)与BP神经网络相结合,建立齿轮箱正常工作状态下的温度模型并用其进行温度预测。通过合理地选择训练样本,使IPSO-BP模型覆盖齿轮箱的正常工作空间。当齿轮箱工作异常时,其动态特性偏离正常工作空间,导致IPSO-BP网络温度模型预测残差的分布特性发生变化。采用滑动窗口方法实时计算残差的统计分布特性,当残差的均值或标准差超过预先设定的阈值时,发出报警信息,提示运行人员检查设备状态。 展开更多
关键词 状态监测 齿轮箱 ipso—BP网络 残差 滑动窗口统计
在线阅读 下载PDF
基于IPSO-BP神经网络的坝基扬压力预测方法研究 被引量:3
14
作者 顾浩钦 仲云飞 +2 位作者 程井 邓同春 李阳 《三峡大学学报(自然科学版)》 CAS 2013年第2期20-24,共5页
针对坝基扬压力预测的传统BP神经网络模型初始权值和阈值随机性强、易陷入局部最优等局限,采用惯性权重动态调整的改进粒子群算法对BP网络的初始权值和阈值进行优化,建立了基于IPSO的BP神经网络坝基扬压力预测模型.通过算例验证算法的... 针对坝基扬压力预测的传统BP神经网络模型初始权值和阈值随机性强、易陷入局部最优等局限,采用惯性权重动态调整的改进粒子群算法对BP网络的初始权值和阈值进行优化,建立了基于IPSO的BP神经网络坝基扬压力预测模型.通过算例验证算法的优越性及程序的准确性,并以某大坝多年扬压力监测数据进行工程实例应用,结果表明,IPSO-BP扬压力预测模型与传统BP模型相比,拟合相关系数大,统计误差小,预测精度更高. 展开更多
关键词 扬压力 BP神经网络 改进粒子群算法 统计模型
在线阅读 下载PDF
基于改进粒子群优化IPSO算法的茶叶烘干机温度控制策略 被引量:11
15
作者 乌兰 刘雅荣 《食品与机械》 CSCD 北大核心 2018年第10期91-94,共4页
针对茶叶烘干机热效率低,温度不稳定、茶叶品质不易保证的问题,对燃煤式热风干炉进行研究,通过对粒子群算法(PSO)进行混沌处理,得出了一种改进粒子群算法(IPSO),然后通过IPSO对模糊PID控制器的参数进行优化,以解决粒子群算法易早熟、寻... 针对茶叶烘干机热效率低,温度不稳定、茶叶品质不易保证的问题,对燃煤式热风干炉进行研究,通过对粒子群算法(PSO)进行混沌处理,得出了一种改进粒子群算法(IPSO),然后通过IPSO对模糊PID控制器的参数进行优化,以解决粒子群算法易早熟、寻优效率低以及PID参数无法实时在线调整的缺点。根据热风炉的实时温度,自动调节热风炉的排烟量,以实现烘干机的温度恒定。同时,采用优化后的模糊PID控制策略对系统进行了仿真和测试。结果表明,该研究所用方法能根据烘干机温度有效控制热风炉排烟量,从而实时控制热风温度,实现恒温控制的目的。 展开更多
关键词 茶叶烘干机 改进粒子群算法 模糊PID控制 优化
在线阅读 下载PDF
基于IPSO的PID参数自整定在流浆箱总压控制中的应用 被引量:5
16
作者 陈帅帅 赵倩梅 +1 位作者 熊智新 胡慕伊 《中国造纸》 CAS 北大核心 2015年第11期37-41,共5页
稀释水水力式流浆箱的总压控制直接关系到纸张质量的好坏,而传统的PID整定方法精度较低,使用标准粒子群优化算法可以提高精度但是算法敛速度较慢。针对这些问题,采用改进的粒子群优化算法来自整定PID参数,通过使用非线性递减惯性系数和... 稀释水水力式流浆箱的总压控制直接关系到纸张质量的好坏,而传统的PID整定方法精度较低,使用标准粒子群优化算法可以提高精度但是算法敛速度较慢。针对这些问题,采用改进的粒子群优化算法来自整定PID参数,通过使用非线性递减惯性系数和动态加速因子策略来提高算法的寻优速度及精度。仿真结果表明,用改进的粒子群优化算法整定后的流浆箱总压控制PID有更好的响应速度和鲁棒性。 展开更多
关键词 流浆箱总压 PID自整定 改进粒子群优化算法
在线阅读 下载PDF
基于IPSO-Powell优化SVM的煤与瓦斯突出预测算法 被引量:11
17
作者 吴雅琴 李惠君 徐丹妮 《工矿自动化》 北大核心 2020年第4期46-53,共8页
针对基于支持向量机(SVM)的煤与瓦斯突出预测算法存在预测精度和可靠性不高,选择核函数时未考虑非线性数据的分类,对非线性分布的煤与瓦斯突出影响因素提取效果较差的问题,提出了一种将改进的粒子群(IPSO)算法与Powell算法相结合(IPSO-P... 针对基于支持向量机(SVM)的煤与瓦斯突出预测算法存在预测精度和可靠性不高,选择核函数时未考虑非线性数据的分类,对非线性分布的煤与瓦斯突出影响因素提取效果较差的问题,提出了一种将改进的粒子群(IPSO)算法与Powell算法相结合(IPSO-Powell)优化SVM的煤与瓦斯突出预测算法.首先通过灰色关联分析提取出煤与瓦斯突出主控因素,即瓦斯放散初速度、瓦斯压力、开采深度、瓦斯含量和煤体破坏类型,作为算法的输入样本;然后运用IPSO算法改善粒子群算法(PSO)的早熟收敛性,结合Powell算法进行局部搜索得到最优解,对SVM算法的惩罚系数和高斯核函数参数进行寻优,得到SVM的最优参数组合;最后将煤与瓦斯突出的主控因素输入到SVM中进行分类,并将其与实际测试集分类结果进行对比,实现煤与瓦斯突出预测.仿真结果表明:与SVM算法、GA-SVM算法、PSO-SVM算法相比,利用IPSO-Powell优化SVM算法进行煤与瓦斯突出预测,具有更高的预测精度,同时提高了SVM求解过程的运算效率,能同时满足煤与瓦斯突出预测的精度和可靠性要求,准确率达到95.9%. 展开更多
关键词 煤与瓦斯突出预测 主控因素 灰色关联分析 支持向量机 改进粒子群算法 POWELL算法
在线阅读 下载PDF
基于IPSO-SVM的瓦斯突出危险程度预测 被引量:4
18
作者 李圣普 王小辉 《现代电子技术》 北大核心 2016年第4期21-25,共5页
煤与瓦斯突出事故危及矿工生命,破坏生产现场。通过现场监测瓦斯突出的相关数据,对瓦斯突出的危险程度进行预测,提前做好防范措施,减少瓦斯突出事故的危害。为此,提出支持向量机算法与改进粒子群算法相结合的瓦斯突出危险程度预测模型:... 煤与瓦斯突出事故危及矿工生命,破坏生产现场。通过现场监测瓦斯突出的相关数据,对瓦斯突出的危险程度进行预测,提前做好防范措施,减少瓦斯突出事故的危害。为此,提出支持向量机算法与改进粒子群算法相结合的瓦斯突出危险程度预测模型:首先对容易陷入局部最优的粒子群进行改进;接着应用改进粒子群算法求解影响支持向量机分类预测性能的最佳参数;然后把最佳参数应用于擅长模式识别的支持向量机算法,进行瓦斯突出样本数据的训练,构建瓦斯预测模型;最后使用瓦斯预测模型对新的瓦斯突出数据进行预测。实验结果表明,采用该方法进行瓦斯突出预测的准确率,比纯支持向量机算法提高了5%。 展开更多
关键词 改进粒子群 支持向量机 参数优化 瓦斯突出预测
在线阅读 下载PDF
基于改进模糊聚类与IPSO-SVM的燃煤电站NO_x排放多模型预测 被引量:13
19
作者 付忠广 高学伟 +2 位作者 李闯 刘炳含 王树成 《动力工程学报》 CAS CSCD 北大核心 2019年第5期387-393,408,共8页
通过挖掘大量脱硝系统现场运行数据,提出一种新的多模型选择性催化还原(SCR)脱硝系统建模方法:首先对SCR脱硝系统进行理论分析和实际运行研究,应用改进遗传模拟退火的模糊聚类算法对训练集进行聚类划分,得到最优聚类效果;然后建立相应... 通过挖掘大量脱硝系统现场运行数据,提出一种新的多模型选择性催化还原(SCR)脱硝系统建模方法:首先对SCR脱硝系统进行理论分析和实际运行研究,应用改进遗传模拟退火的模糊聚类算法对训练集进行聚类划分,得到最优聚类效果;然后建立相应的支持向量机子模型,并采用改进的粒子群算法对模型参数进行优化,所建立的子模型通过隶属度值加权融合得到最终的整体预测模型。以某电站锅炉脱硝系统为例,对所提出的方法进行验证,并与其他建模方法进行比较。结果表明:所建立的模型具有较高的泛化能力和预测精度。 展开更多
关键词 NOX排放 多模型建模 模糊聚类 改进粒子群算法 遗传模拟退火
在线阅读 下载PDF
基于IPSO-BP的轻型汽油车道路排放预测 被引量:1
20
作者 王志红 严浩 +1 位作者 袁雨 刘志恩 《北京交通大学学报》 CAS CSCD 北大核心 2020年第6期103-109,共7页
结合轻型汽油车RDE测试方法,采用便携式排放测试系统(Portable Emission Measurement System,PEMS),对某国六轻型汽油车在市区、市郊和高速路段上进行排放特性测试;建立双隐含层反向传播神经网络,并加入改进粒子群算法(Improved Particl... 结合轻型汽油车RDE测试方法,采用便携式排放测试系统(Portable Emission Measurement System,PEMS),对某国六轻型汽油车在市区、市郊和高速路段上进行排放特性测试;建立双隐含层反向传播神经网络,并加入改进粒子群算法(Improved Particle Swarm Optimization Algorithm,IPSO)对BP结构的初始阈值及权值进行寻优;利用主成分分析对输入参数进行降维,CO与NO x排放预测值为目标输出,用试验数据进行训练及验证.结果表明:所建立的IPSO-BP排放预测模型的泛化能力较好,CO与NO x排放预测值能与试验值高度吻合,其平均相对误差分别为10.58%和13.76%;整体排放水平上,CO与NO x排放因子相对误差分别为4.81%和6.4%,该预测模型对监测轻型汽油车实际道路排放具有一定的工程价值. 展开更多
关键词 RDE测试 便携式排放测试系统 改进粒子群算法 排放预测模型
在线阅读 下载PDF
上一页 1 2 19 下一页 到第
使用帮助 返回顶部