加筋壳结构具有较高的比刚度和比强度,被广泛应用于航空航天承力结构中。可靠性优化设计(Reliability Based Design Optimization,RBDO)方法通过综合考虑结构参数中的不确定性和风险因素,可避免结构的过保守设计,保证其在服役环境中的...加筋壳结构具有较高的比刚度和比强度,被广泛应用于航空航天承力结构中。可靠性优化设计(Reliability Based Design Optimization,RBDO)方法通过综合考虑结构参数中的不确定性和风险因素,可避免结构的过保守设计,保证其在服役环境中的可靠性和安全性。提出了一种基于自适应代理模型的高效RBDO方法,来解决屈曲可靠性约束下的加筋壳结构轻量化设计问题。基于预期可行性函数准则实现了样本点的自适应添加,并通过构建分段函数将离散变量连续化,进而在保证设计结果可靠性的前提下提高优化效率。最后,通过将可靠性优化设计结果与确定性优化结果对比,验证了所提方法的有效性。展开更多
对某纯电动汽车的车门进行分析发现车门在下垂工况加载处的最大位移不满足企业要求,基于下垂刚度提升的需要。在建立前车门的有限元模型后,通过实验设计(Design of Experiment)确定对车门性能影响较大的部件。由于构造简单、收敛速度快...对某纯电动汽车的车门进行分析发现车门在下垂工况加载处的最大位移不满足企业要求,基于下垂刚度提升的需要。在建立前车门的有限元模型后,通过实验设计(Design of Experiment)确定对车门性能影响较大的部件。由于构造简单、收敛速度快且对数值噪声有过滤作用等优点,构建了多项式响应面近似模型,将软件仿真与基于全局近似的多项式响应面近似模型进行了结合。最后通过多学科设计优化,在一阶模态频率及刚度满足要求的前提下得到最优解,并把最优解带入有限元中进行了验证结果表明在使得模态及刚度满足要求外,车门质量减少了1.35kg,轻量化效果显著。展开更多
文摘加筋壳结构具有较高的比刚度和比强度,被广泛应用于航空航天承力结构中。可靠性优化设计(Reliability Based Design Optimization,RBDO)方法通过综合考虑结构参数中的不确定性和风险因素,可避免结构的过保守设计,保证其在服役环境中的可靠性和安全性。提出了一种基于自适应代理模型的高效RBDO方法,来解决屈曲可靠性约束下的加筋壳结构轻量化设计问题。基于预期可行性函数准则实现了样本点的自适应添加,并通过构建分段函数将离散变量连续化,进而在保证设计结果可靠性的前提下提高优化效率。最后,通过将可靠性优化设计结果与确定性优化结果对比,验证了所提方法的有效性。
文摘对某纯电动汽车的车门进行分析发现车门在下垂工况加载处的最大位移不满足企业要求,基于下垂刚度提升的需要。在建立前车门的有限元模型后,通过实验设计(Design of Experiment)确定对车门性能影响较大的部件。由于构造简单、收敛速度快且对数值噪声有过滤作用等优点,构建了多项式响应面近似模型,将软件仿真与基于全局近似的多项式响应面近似模型进行了结合。最后通过多学科设计优化,在一阶模态频率及刚度满足要求的前提下得到最优解,并把最优解带入有限元中进行了验证结果表明在使得模态及刚度满足要求外,车门质量减少了1.35kg,轻量化效果显著。