In order to improve the low ductility of the Mo-Ni alloy,Fe is added and the effects of Ni/Fe mass ratio on the densification behavior,microstructure evolution and mechanical properties of alloy were investigated.The ...In order to improve the low ductility of the Mo-Ni alloy,Fe is added and the effects of Ni/Fe mass ratio on the densification behavior,microstructure evolution and mechanical properties of alloy were investigated.The experimental results show that when iron is added to 95Mo-5Ni alloy,the formation of brittle intermetallic phaseδ-MoNi at the grain boundary is avoided.Meanwhile,the grain growth of Mo is also effectively inhibited in the sintering process.However,the addition of iron reduces the degree of densification of alloy since the activation effect of Ni is superior to that of Fe.From the experimental results,it could be concluded that the maximum hardness and bending strength are achieved by 95Mo-1.5Ni-3.5Fe alloy,which are HV 614 and 741 MPa,respectively.Combined with the analyses of bending fracture mechanism,the improvement relative to Mo-Ni alloy is likely attributed to the inhibition of the brittle phase.展开更多
基金Project(51734002)supported by the National Natural Science Foundation of China。
文摘In order to improve the low ductility of the Mo-Ni alloy,Fe is added and the effects of Ni/Fe mass ratio on the densification behavior,microstructure evolution and mechanical properties of alloy were investigated.The experimental results show that when iron is added to 95Mo-5Ni alloy,the formation of brittle intermetallic phaseδ-MoNi at the grain boundary is avoided.Meanwhile,the grain growth of Mo is also effectively inhibited in the sintering process.However,the addition of iron reduces the degree of densification of alloy since the activation effect of Ni is superior to that of Fe.From the experimental results,it could be concluded that the maximum hardness and bending strength are achieved by 95Mo-1.5Ni-3.5Fe alloy,which are HV 614 and 741 MPa,respectively.Combined with the analyses of bending fracture mechanism,the improvement relative to Mo-Ni alloy is likely attributed to the inhibition of the brittle phase.