In order to clarify the mechanism of action of licorice flavonoids in alleviating bone loss caused by osteoporosis,this study compared the effects of four glycyrrhiza flavonoids,naringenin,liquiritigenin,isoliquiritig...In order to clarify the mechanism of action of licorice flavonoids in alleviating bone loss caused by osteoporosis,this study compared the effects of four glycyrrhiza flavonoids,naringenin,liquiritigenin,isoliquiritigenin,and licochalcone A,on osteogenic differentiation and mineralization by molecular docking simulation,alkaline phosphatase(ALP)activity and osteocalcin(OCN)content assays,and Runt-related transcription factor 2(Runx2)expression,and explored their potential molecular mechanisms.The results of molecular docking showed that the docking score of liquiritigenin with the estrogen receptor(ER)was the highest.All four flavonoids up-regulated ALP activity and OCN concentration in MC3T3-E1 cells,thereby elevating the mineralization level,among which liquiritigenin was the most effective.Moreover,treatment with a phosphatidylinositol-3-kinase(PI3K)inhibitor(LY294002)inhibited liquiritigenin from inducing increased phosphorylation levels in the PI3K/protein kinase B(AKT)signaling pathway and up-regulation of Runx2 expression,suggesting that PI3K and AKT were involved in osteogenic action.Liquiritigenin reversed bone mineral density loss in a zebrafish osteoporosis model.These findings suggest that liquiritigenin has the most significant osteogenic effect among the four estrogen-like flavonoids,stimulating osteoblast differentiation and bone mineralization through the activation of Runx2 via the PI3K/AKT signaling pathways.In conclusion,this study highlights the great potential of liquiritigenin for preventing and treating osteoporosis.展开更多
G protein coupled receptors(GPCRs)are transmembrane receptor proteins,which allow signals to transfer across membrane.GPCRs include a large number of receptors,different receptors mediated different signaling pathways...G protein coupled receptors(GPCRs)are transmembrane receptor proteins,which allow signals to transfer across membrane.GPCRs include a large number of receptors,different receptors mediated different signaling pathways of GPCRs-adenylyl cyclase(AC)-cyclic adenosine 3',5'-monophosphate(c AMP),including β2 adrenergic receptors(β2-ARs)-AC-c AMP signaling pathways,E-prostanoid2/4(EP2/4)-AC-cA MP signaling pathways.Regulatory proteins,such as G protein coupled receptor kinases(GRKs)andβ-arrestins,play important modulatory roles in GPCRs signaling pathway.GPCRs signaling pathway and regulatory proteins implicate the pathogenesis process of inflammatory and immune response.Rheumatoid arthritis(RA)is an autoimmune disease characterized by synovitis and accompanied with inflammatory and abnormal immune response.This article review the advances on GPCRs signaling pathway implicating in the inflammatory and immune response of RA.展开更多
The treatment and signaling pathway regulation effects of kidney-tonifying traditional Chinese medicine on osteoporosis have been widely studied,but without a systematic summary currently.This review comprehensively c...The treatment and signaling pathway regulation effects of kidney-tonifying traditional Chinese medicine on osteoporosis have been widely studied,but without a systematic summary currently.This review comprehensively collected and analyzed the traditional Chinese medicine on the treatment and signaling pathway regulation of osteoporosis in recent ten years,such as Epimedium,Drynariae Rhizoma,Cnidium,Eucommia,Psoralen and Dipsacus.Based on the existing findings,we concluded the following conclusions:(1)kidney-tonifying traditional Chinese medicine treats osteoporosis mainly through BMP-Smads,Wnt/β-catenin,MAPK,PI3K/AKT signaling pathway to promote osteoblast bone formation and through OPG/RANKL/RANK,estrogen,CTSK signaling pathway to inhibit osteoclasts of bone resorption.(1)Epimedium,Drynariae Rhizoma,Cnidium and Psoralen up-regulate the key proteins and genes of BMP-Smads and Wnt/β-catenin signaling pathways to promote bone formation.(2)Epimedium,Drynariae Rhizoma,Cnidium,Eucommia,Psoralen,Dipsacusinhibit the bone resorption by mediating the OPG/RANKL/RANK signaling pathway.(2)Kidney-tonifying traditional Chinese medicine prevent and treat osteoporosis through a variety of ways:Icariin,Naringin,Osthol,Psoralen can regulate BMP-Smads,Wnt/β-catenin signaling pathway to promote bone formation,but also activate OPG/RANKL/RANK,CTSK and other signaling pathway to inhibit bone resorption.(3)The crosstalk of the signaling pathways and the animal experiments of the traditional Chinese medicine on the prevention and treatment of osteoporosis as well as their multi-target mechanism and comprehensive regulation need further clarification.展开更多
Objective To investigate the effect of mucin 1(MUC1)on the proliferation and apoptosis of nasopharyngeal carcinoma(NPC)and its regulatory mechanism.Methods The 60 NPC and paired para-cancer normal tissues were collect...Objective To investigate the effect of mucin 1(MUC1)on the proliferation and apoptosis of nasopharyngeal carcinoma(NPC)and its regulatory mechanism.Methods The 60 NPC and paired para-cancer normal tissues were collected from October 2020 to July 2021 in Quanzhou First Hospital.The expression of MUC1 was measured by real-time quantitative PCR(qPCR)in the patients with PNC.The 5-8F and HNE1 cells were transfected with siRNA control(si-control)or siRNA targeting MUC1(si-MUC1).Cell proliferation was analyzed by cell counting kit-8 and colony formation assay,and apoptosis was analyzed by flow cytometry analysis in the 5-8F and HNE1 cells.The qPCR and ELISA were executed to analyze the levels of TNF-αand IL-6.Western blot was performed to measure the expression of MUC1,NFкB and apoptosis-related proteins(Bax and Bcl-2).Results The expression of MUC1 was up-regulated in the NPC tissues,and NPC patients with the high MUC1 expression were inclined to EBV infection,growth and metastasis of NPC.Loss of MUC1 restrained malignant features,including the proliferation and apoptosis,downregulated the expression of p-IкB、p-P65 and Bcl-2 and upregulated the expression of Bax in the NPC cells.Conclusion Downregulation of MUC1 restrained biological characteristics of malignancy,including cell proliferation and apoptosis,by inactivating NF-κB signaling pathway in NPC.展开更多
OBJECTIVE To investigate the protective effect of icariin(ICA) on lipopolysaccharide(LPS)-induced BV2 microglia injury,and to clarify the role of nuclear factor erythroid 2-related factor 2(Nrf2) signaling pathway in ...OBJECTIVE To investigate the protective effect of icariin(ICA) on lipopolysaccharide(LPS)-induced BV2 microglia injury,and to clarify the role of nuclear factor erythroid 2-related factor 2(Nrf2) signaling pathway in BV2 microglia-mediated neuroinflammation.METHODS BV2 microglia were randomly divided into control,ICA(0.1 μmol·L^(-1)),LPS(1 mg·L^(-1)),LPS + ICA(0.01 μmol·L^(-1)),and LPS + ICA(0.1 μmol·L^(-1))groups.BV2 microglia were treated with ICA for 30 min and then treated with LPS for 24 h.MTT assay was used to determine the cells survival rate,Griess kit and ELISA kits were used to detect the contents of NO,IL-1β and IL-18 in the culture supernatant,Western blotting was used to detect the expression of Nrf2,HO-1 and NQO1.Real time RT-PCR was used to detect the expression of Nrf2,HO-1 and NQO1 after ICA addition for 2,6 and 24 h.And immunofluorescence was used to observe the activation of Nrf2.RESULTS ICA reduced LPS-induced NO,IL-1β and IL-18 production in the culture supernatant,and ICA increase LPS-induced mRNA and protein expression of Nrf2 signaling pathway.CONCLUSION ICA protects LPS induced neuroinflammation by regulating Nrf2 signaling pathway.展开更多
Osteoarthritis(OA)is an inflammatory disease involving the joints that is prevalent in the global aging population.The purpose of this study is to determine whether irisin can attenuate osteoarthritis(OA)progression i...Osteoarthritis(OA)is an inflammatory disease involving the joints that is prevalent in the global aging population.The purpose of this study is to determine whether irisin can attenuate osteoarthritis(OA)progression in anterior cruciate ligament transection(ACLT)mice models and the mechanism of irisin therapy effect on OA by increase the resistance of apoptosis in MLO-Y4 cells induced by mechanical stretch in vitro.Methods For in vivo study,3-month-old male C57BL/6 J mice were randomized to three groups,sham-operated,anterior cruciate ligament transection(ACLT)-operated treated with vehicle,and ACLT-operated treated with irisin by intraperitoneal injection once a week.Cartilage erosion was observed by HE staining.Osteoarthritis Research Society International(OARSI)scores were evaluated according to the safranin O stai-ning.The microstructure of tibia cortical bone,trabecular bone,and subchondral bone was analyzed by micro-CT and the bone histomorphometry has been administrated including mineral apposition rate(MAR).Edu staining and cck-8 were used for the detection of the proliferation of MLO-Y4 cells.For mechanical stress,cells were seeded on the collagen-I coated chamber subjected with a peak biaxial stretch of 20%at 1 Hz for 16 hours to induce apoptosis.Flow cytometry was used for the detection of apoptosis and cell cycle.TUNNEL was used for staining the apoptotic cells and rt-PCR was applied for quantifying the expression of mRNA such as Bax,Bcl-2,SOST,c-myc,Opg.Western blot was utilized to confirm the mechanism of how irisin decrease the osteocyte apoptosis.Results In vivo,irisin can attenuate articular cartilage degeneration.Irisin maintains the proportion of hyaline cartilage and calcified cartilage and keep fewer cartilage erosions in ACLT-operated mice.For immunohistochemical(IHC)staining,irisin reduced the expression of caspase3,Bax and matrix metalloproteinase-13 in both cartilage and subchondral bone.Irisin-treated ACLT group shows higher Trabecular number(Tb.N)and bone volume fraction(BV/TV)compared to the vehicle-treated ACLT group.In vitro, irisin significantly increased the proliferation of MLO-Y4 cells detected by Edu and Ki67 staining,and irisin can protect the cells from both mechanical stretchinduced apoptosis detected by FITC-PI flow cytometry and maintain the cell activity by regulating the expression of Bax,Bcl-2,and c-myc.Transcriptome sequencing shows that irisin significantly activates the MAPK signaling pathway and we confirm the result by western blot:irisin effectively activates the Erk signaling pathway through phosphorylation and has a certain activation effect on p38 signaling pathway,no activation was observed for FAK signaling pathway.Conclusions Irisin can attenuate the progression of OA by decrease the apoptosis of osteocyte,which can improve the microarchitecture of subchondral bone.Erk pathway activation plays an important role in reducing the apoptosis of osteocyte.展开更多
Objective Apoptosis is recognized as an important mechanism in contrast-induced nephropathy(CIN).Acupuncture and moxibustion,the auxiliary treatment in China,are effective interventions for cell apoptosis in many isch...Objective Apoptosis is recognized as an important mechanism in contrast-induced nephropathy(CIN).Acupuncture and moxibustion,the auxiliary treatment in China,are effective interventions for cell apoptosis in many ischemic diseases.In our previous study,we found acupuncture and moxibustion could prevent CIN.The objective of this research is to study the mechanism of acupuncture and moxibustion on tubular epithelial cell apoptosis in diabetic CIN rats.展开更多
Vascular remodeling,which can be found in atherosclerosis,restenosis after angioplasty,hypertension,and some other frequent and serious chronic diseases.Smooth muscle cell(SMC)phenotype change,which has been described...Vascular remodeling,which can be found in atherosclerosis,restenosis after angioplasty,hypertension,and some other frequent and serious chronic diseases.Smooth muscle cell(SMC)phenotype change,which has been described as converting from a contractile state into a synthetic phenotype,is a crucial event during vascular remodeling.Recently,micro RNAs(mi RNAs)a kind of small non-coding RNA molecules,has been proven to target critical genes of cell signaling pathways to regulate SMC phenotypic change.By searching the Pub Med,Embase,reviews,and reference listsof relevant papers,we systematically carried out a review of the literature to provide an overview of the mi RNAs and their target genes in cell signaling pathways,focus inthe pathways involving in SMC phenotype change.To be specific,mi RNAs that regulate genes involved in the MAPK signaling pathways(such as:mi R-155,mi R-92a,mi R-424/503,mi R-133,mi R-181b,mi R-31,mi R-1298,mi R-132,mi R-200c and mi R-483-3p),mi RNAs target genes involved in the TGF-βsignaling pathways(including mi R-24,mi R-17/92 cluster,mi R-599,mi R-21 and mi R-143/145),mi RNAs target the genes involved in the AMPK signaling pathways including mi R-144/451 and mi R-195,mi RNAs target the genes involved in the PI3K-Akt signaling pathways(including mi R-138,mi R-34c,mi R-223,mi R-761,mi R-10a,mi R-146a),mi R-199a-5ptargets the genes involved in the Wnt signaling pathways mi RNAs(mi R-221/222,mi R-15b,mi R-24/29a,mi R-224)involved in the PDGF signaling pathways and some mi RNAs(mi R-638,mi R-328,mi R-365,mi R-663,mi R-29b,mi R-130,mi R-142-5p,mi R-424/322)which regulate SMC phenotype change by other corresponding targets were in detailed discussed in our review.Exploring the regulation of miR NAs in key cellsignaling pathways-mediatedvascular remodeling wil have momentous impact on identifying novel therapeutic targets for its associated disease.展开更多
OBJECTIVE To investigate the therapeutic effect of scutellarin on colitis-associated cancer(CAC)and its underlying mechanism based on Wnt/β-catenin signaling pathway.METHODS The mouse model of CAC was established by ...OBJECTIVE To investigate the therapeutic effect of scutellarin on colitis-associated cancer(CAC)and its underlying mechanism based on Wnt/β-catenin signaling pathway.METHODS The mouse model of CAC was established by azomethane oxide(AOM)and sodium dextran sulfate(DSS),followed by scutellarin treatment,with recording the body weight,diarrhea and hematochezia.After sacrificing the mice,the colorectal length and colorectal tumor were assessed.The levels of pro-inflammatory factors TNF-αand IL-6 in mice′s sera were measured by the enzyme-linked immunosorbent assay(ELISA).The colorectal lesions were appraised by hematoxylin and eosin(H&E)staining.Theβ-catenin level in CAC tissues was probed by immunofluorescent analysis.The apoptosis-related genes Bax and Bcl-2,and Wnt signaling pathway-related genesβ-catenin,GSK-3β,TCF4,c-Myc and cyclin D1 were detected by real-time quantitative RT-PCR(RT-qPCR).Finally,Western blotting analysis(WB)was employed to examine the expressions of the apoptosis and Wnt signaling pathway-related proteins.RESULTS Scutellarin significantly improved AOM/DSS-caused weight loss,colorectal length shortening,and tumor growth in mice(P<0.01).Meanwhile,colorectal lesions could be substantially alleviated by scutellarin.ELISA results showed that the levels of pro-inflammatory factors TNF-αand IL-6 were drastically lessened(P<0.01).Scutellarin also sharply inhibited the nuclear translocation ofβ-catenin,as evidenced by the reduction in the nuclear level ofβ-catenin protein.In addition,scutellarin attenuated the mRNA expression of Wnt signaling pathway-relatedβ-catenin,TCF4,c-Myc and cyclin D1,whereas it heightened GSK-3βmRNA level.These results were consolidated by WB analysis,which indicated that scutellarin could mitigate the protein levels of phospho-GSK-3β,β-catenin,TCF4,c-Myc and cyclin D1,with the increase in GSK-3βprotein in CAC tissue.Moreover,scutellarin could induce the apoptosis of CAC,demonstrated by enhanced expression of Bax and diminished expression of Bcl-2 in both mRNA and protein levels.CONCLUSION Scutellarin may ameliorate colitis-associated colorectal cancer by weakening Wnt/β-catenin signaling cascade.展开更多
OBJECTIVE To investigate the inhibition and mechanism of berberine on human colorectal cancer HCT116 cells through canonical Hedgehog signaling pathway.METHODS The effect of berberine on cell morphology was observed b...OBJECTIVE To investigate the inhibition and mechanism of berberine on human colorectal cancer HCT116 cells through canonical Hedgehog signaling pathway.METHODS The effect of berberine on cell morphology was observed by microscopy.MTT colorimetric assay,cell scratch experiment,colony formation assay and Hoechest/PI staining were utilized to detect the activities of berberine on cell viability,cell migration and cell apoptosis.Flow cytometry was applied to examine the cell apoptosis.The effects of berberine on caspase-3 and caspase-9 were detected by caspase activity detection kit.The expressions of Hedgehog signaling pathway-related proteins SHH,GLI1,PTCH1,SMO,SUFU,apoptosis-related proteins Bax and Bcl-2 as well as cell cycle-related proteins cyclin D1 were detected by Western blotting.Additionally,quantitative real time RT-PCR was employed to assess the mRNA expression levels of Hedgehog signaling pathway-related genes SHH,GLI1,PTCH1,SMO,SUFU,apoptosis-related genes Bax and Bcl-2 as well as cell cycle-related genes cyclin D1.RESULTS Berberine sharply altered the morphology of human colorectal cancer HCT116 cells,demonstrated by that migration ability of HCT116 cells was reduced significantly and the nuclei were densely stained.Berberine could induce apoptosis in a dose-dependent manner.The activities of caspase-3 and caspase-9 were increased prominently.The expression levels of Hedgehog signaling pathway-related protein SUFU and apoptosis-related protein Bax were augmented substantially.The expression levels of Hedgehog signaling pathway-related proteins SHH,GLI1,PTCH1,SMO,apoptosis-related protein Bcl-2 as well as cell cycle-related genes cyclin D1 were markedly lessened.Besides,the mRNA expression levels of Hedgehog signaling pathway-related gene SUFU and apoptosis-related gene Bax were augmented substantially.The mRNA expression levels of Hedgehog signaling pathway-related genes SHH,GLI1,PTCH1,SMO,apoptosis-related gene Bcl-2 as well as cell cycle-related gene cyclin D1 were markedly lessened.CONCLUSION Berberine,which is the main component of coptidis rhizoma,can remarkably restrain the growth and proliferation,promote apoptosis of human colorectal cancer cells HCT116,and the underlying mechanism may be involved in suppressing the activity of the Hedgehog signaling pathway.展开更多
The mammalian target of rapamycin (mTOR) signaling pathway is evolutionarily conserved, mTOR can integrate and converge a wide range of signals, including intracellular and extracellular nutrients, growth factors, e...The mammalian target of rapamycin (mTOR) signaling pathway is evolutionarily conserved, mTOR can integrate and converge a wide range of signals, including intracellular and extracellular nutrients, growth factors, energy and stress conditions, and has a crucial role in the vertebrate growth control. This review analyzed the main components and regulated factors of TOR signaling pathway, explained functions and mechanisms of roTOR during the individual growth, the development and its dynamic role, revealed its additional functions beyond the cell growth control, and finally reviewed the tissue specificity and time specificity of mTOR signaling pathway, and its regulation on sexual differentiation, tissue differentiation and organogenesis in the individual development.展开更多
OBJECTIVE To investigate the effect of scutellarin on the apoptosis of human colorectal cancer cells via the Hippo signaling pathway in vitro.METHODS MTT colorimetric method was used to detect the influence of scutell...OBJECTIVE To investigate the effect of scutellarin on the apoptosis of human colorectal cancer cells via the Hippo signaling pathway in vitro.METHODS MTT colorimetric method was used to detect the influence of scutellarin on the survival rate of HCT116 cells.And the effect of scutellarin at various concentrations on cell morphology was observed by microscopy.Cell scratch experiment was used to detect the influence of scutellarin on the migration of HCT116 cells.Hoechst33342/PI double staining method was used to detect the effect of scutellarin on the apoptosis of HCT116 cells.Western blotting method was used to assess the action of scutellarin on the expressions of Hippo signaling pathway-related proteins Mst1,Lats1,YAP1,p-YAP(Ser127),TAZ,and its downstream effector proteins c-Myc and cyclin D1,as well as apoptosis-related proteins Bcl-2 and Bax in HCT116 cells.RESULTS Scutellarin significantly affected the morphology of HCT116 cells and reduced the survival rate of HCT116 cells.Hoechst33342/PI double staining showed that scutellarin effectively induced the apoptosis of HCT116 cells.Western blotting analysis showed that the expression levels of Hippo signaling pathway-related proteins Mst1,Lats1,YAP1,TAZ and its downstream effector proteins c-Myc,cyclin D1 were down-regulated in a concentration-dependent manner by scutellarin,and the expression of p-YAP(ser127)was up-regulated.Moreover,scutellarin substantially lessened the expression level of apoptosis-related protein Bcl-2,and promoted the protein level of Bax.CONCLUSION Scutellarin may inhibit the proliferation and migration of HCT116 cells,while induce its apoptosis,potentially by activation of Hippo signaling pathway.展开更多
OBJECTIVE To investigate the inhibitory effect of scutellarin on the self-renewal and differentiation of HT-29 cells-derived cancer stem-like cells(HT-29CSC)in vitro and in vivo,and to explore its mechanism.METHODS Th...OBJECTIVE To investigate the inhibitory effect of scutellarin on the self-renewal and differentiation of HT-29 cells-derived cancer stem-like cells(HT-29CSC)in vitro and in vivo,and to explore its mechanism.METHODS The effect of scutellarin on the growth of HT-29CSC was determined by 3D Culture assay.The effect of scutellarin on growth and transformation of HT-29CSC was probed by soft agar colony formation assay.The effect of scutellarin on the differentiation of HT-29CSC was determined by serum induction differentiation assay in vitro.The effects of scutellarin on the expressions of marker gene Lgr5,target gene c-Myc,proliferation gene CK20 and Nanog gene were measured by quantitative real-time RT-PCR.Investigate the effect of scutellarin on the expression of c-Myc,Gli1,and Lgr5 protein by Western blotting.A subcutaneous xenograft model of colon cancer in nude mice was established and administered by intraperitoneal injection.The change of body weight and tumor size of nude mice were observed every two days.Investi⁃gate the effects of scutellarin on the growth of xenograft tumors in nude mice.The expression of CD133,Lgr5,Gli1,Ptch1,c-Myc,Ki67,CK20,Nanog gene in tumors were measured by quantitative real-time RT-PCR.The expression of c-Myc,Gli1,Lgr5,CD133,Ki67 protein were measured by Western blotting.RESULTS Scutellarin can inhibit the growth of HT-29CSC in 3D culture.Compared with the solvent control group,scutellarin can significantly inhibit the growth and transformation and differentiation of HT-29CSC in vitro(P<0.01).The expression levels of marker genes Lgr5,target gene c-Myc,proliferation gene CK20 and Nanog in HT-29CSC were down-regulated by scutellarin.Scutellarin can reduce the expression of c-Myc,Gli1,and Lgr5 protein in HT-29CSC.Scutellarin can inhibit the growth of colon cancer xenografts,lower CD133,Lgr5,Gli1,Ptch1,c-Myc,Ki67,CK20,and Nanog mRNA level of xenograft tumors,reduce the expression of c-Myc,Gli1,Lgr5,CD133,and Ki67 protein of xenograft tumors in nude mice.CONCLUSION Scutellarin,which is the main component of scutellaria barbata,can inhibit the differentiation of HT-29CSC and the mechanism is to inhibit the activity of Hedgehog signaling pathway.展开更多
The study was conducted to investigate the effect and mechanism of dietary quercetin supplementation on protein utilization of Arbor Acres(AA)broilers.A total of 2401-day-old AA broilers were randomly allocated to fou...The study was conducted to investigate the effect and mechanism of dietary quercetin supplementation on protein utilization of Arbor Acres(AA)broilers.A total of 2401-day-old AA broilers were randomly allocated to four treatments with six replicates,comprising 10 broilers each replicate(60 broilers per treatment).Birds were fed either a corn-soybean meal basal diet without quercetin(control)or a basal diet supplemented with 0.2,0.4 or 0.6 g of quercetin per kg feed,and the trial lasted 42 days.Dietary quercetin supplementation tended to increase the apparent metabolic rate of protein(p=0.076)and the content of serum albumin(p=0.062)in AA broilers.Compared with the control,dietary quercetin supplementation increased the contents of protein in breast muscle(p<0.05)and in thigh muscle(p=0.053).In addition,quercetin up-regulated mRNA expression of insulin-like growth factor 1(IGF-1),phosphatidylinositol 3-kinase(PI3K),target of rapamycin(TOR),ribosomal protein S6 kinase 1(S6K1),eukaryotic translation initiation factor 4E(eIF4E),eukaryotic translation initiation factor 4G(eIF4G),eukaryotic elongation factor 2(eEF2)and eukaryotic translation initiation factor 4B(eIF4B)genes and down-regulated mRNA expression of eukaryotic elongation factor 2 kinase(eEF2K)and eukaryotic initiation factor 4E binding protein1(4E-BP1)genes in breast muscle,thigh muscle and liver of AA broilers(p<0.05).The present results suggested that dietary quercetin supplementation enhanced protein utilization in broilers by activating TOR signaling pathway.展开更多
OBJECTIVE This study was to investigate the effects of CP-25 on the functions of activated human B cells through regulating BAFF and TNF-alpha signaling.METHODS B cells from peripheral blood mononuclear cells(PBMCs) o...OBJECTIVE This study was to investigate the effects of CP-25 on the functions of activated human B cells through regulating BAFF and TNF-alpha signaling.METHODS B cells from peripheral blood mononuclear cells(PBMCs) of normal human were isolated using magnetic cell separation(MACS) by a positive selection.B cells(107 cells·mL^(-1)) were stimulated by BAFF(100 ng·mL^(-1))or TNF-alpha(100 ng·mL^(-1)) for two hours,and then were treated with CP-25(10-5 mol·L^(-1)) or Rituximab(5 μg·mL^(-1)) or Etanercept(10 μg·mL^(-1)).B cell proliferation was detected by CCK-8.B cell subsets and BAFF receptors(BAFFR,BCMA and TACI) were analyzed by flow cytometry.The expression of TNFR1 and TNFR2 on B cells was analyzed by flow cytometry.The expression of MKK3,MKK6,P-p38,P-p65,TRAF2 and p100/52 was analyzed by Western blotting.RESULTS CP-25 inhibited B cells proliferation stimulated by BAFF or TNF-alpha.CP-25,Rituximab and Etanercept reduced the percentage and numbers of CD19^+B cells,CD19^+CD20^+B cells,CD19^+CD27^+B cells and CD19^+CD20^+CD27^+B cells induced by BAFF or TNF-alpha.CP-25 down-regulated the high expression of BAFFR,BCMA and TACI stimulated by BAFF or TNF-alpha.CP-25,Rituximab and Etanercept down-regulated significantly the expression of TNFR1 and TNFR2 on B cell stimulated by BAFF or TNF-alpha.CP-25,Rituximab and Etanercept down-regulated the expression of MKK3,P-p38,P-p65,TRAF2 and p52 in B cells stimulated by BAFF and the expression of TRAF2 and P-p65 in B cells stimulated by TNF-alpha.CONCLUSION CP-25 regulated moderately activated B cells function by by regulating the classical and alternative NF-κB signaling pathway mediated by BAFF and TNF-alpha-TRAF2-NF-κB signaling pathway.This study suggests that CP-25 may be a promising anti-inflammatory immune and soft regulation drug.展开更多
OBJECTIVE To investigate the pharmacological effect of ursolic acid(UA)on colitis-associated colorectal cancer(CAC)and its underlying mechanism based on the Wnt signaling pathway.METHODS The CAC model in mice was esta...OBJECTIVE To investigate the pharmacological effect of ursolic acid(UA)on colitis-associated colorectal cancer(CAC)and its underlying mechanism based on the Wnt signaling pathway.METHODS The CAC model in mice was established by azoxymethane(AOM)combined and dextran sulfate sodium salt(DSS),accompanied by treatment with various dosages of UA and concomitant appraisal of body weight,stool and physical state of the mice.After the sacrifice of the mice,the tumor and length of the colorectum were measured,followed by retrieval of the liver,spleen,thymus and tumor tissue for downstream assays.The levels of inflammatory factors interleukin-6(IL-6),IL^(-1)βand C-reactive protein(CRP)in the tumor and serum were examined by enzyme-linked immunosorbent assay(ELISA).The pathological changes of colorectal tissues were observed by HE staining.The levels in tumors of Wnt/β-catenin signaling pathway-related proteins Wnt4,GSK-3β,β-catenin,TCF4,LEF1,c-Myc,cyclin D1 and apoptosis-related protein Bcl-2 were assayed by immunohistochemistry(IHC).The mRNA expressions of Wnt4,GSK-3β,β-catenin,TCF4,LEF1,c-Myc,cyclin D1,Bcl-2,Bax,caspase-9 and caspase-3 in tumors were detected by real-time quantitative RT-PCR(RT-qPCR).The protein levels of Wnt4,GSK-3β,β-catenin,TCF4,LEF1,c-Myc,cyclin D1,phospho-β-catenin,phospho-GSK-3β,Bcl-2 and Bax in tumors were probed by analyzed by Western blotting(WB).Also,RNA-seq was employed to assess the gut microbiota in the mice.RESULTS UA significantly ameliorated the symptoms of AOM/DSS-induced mouse CAC,evidenced by improved physical state,body weight,survival rate,colorectal length,the mass of liver,thymus,spleen,and decreased CAC load and colorectal mass.UA attenuated the levels of IL-6,IL^(-1)βand CRP in the mouse serum and colorectal tumor in a dose-dependent manner.HE staining showed that UA lessened carcinogenesis in the colorectum,with lower infiltration of lymphocytes,versus the control.IHC indicated that UA mitigated the expression of Wnt4,β-catenin,TCF4,LEF1,c-Myc,cyclin D1,Bcl-2,and promoted the GSK-3βexpression,compared with the control.Furthermore,UA diminished the mRNA expressions of Wnt4,β-catenin,TCF4,LEF1,c-Myc,cyclin D1,Bcl-2,and heightened the mRNA levels of GSK-3β,caspase-3,capase-9 and Bax in CAC.The results of mRNA expressions were verified by WB analysis,which revealed that UA impeded the protein expression of Wnt4,β-catenin,c-Myc,cyclin D1,Bcl-2,TCF4,LEF1,and elevated the protein levels of GSK-3βand Bax,phospho-β-catenin in mouse CAC.In addition,UA substantially ameliorated the gut microbiota to store the metabolic function in the mice with CAC.CONCLUSION Ursolic acid may protect against CAC,potentially by downregulation of Wnt/β-catenin signaling pathway activity and restoration of gut microbiota.展开更多
OBJECTIVE To investigate the protective effect of salvianolic acid A(Sal A)on isoproterenol-induced myocardial infarction in mice and its possible mechanisms.METHODS The mice were subcutaneously injected with isopropr...OBJECTIVE To investigate the protective effect of salvianolic acid A(Sal A)on isoproterenol-induced myocardial infarction in mice and its possible mechanisms.METHODS The mice were subcutaneously injected with isopropranol(ISO 8 mg·kg-1)to induce myocardial infarction and evaluated the myocardial protective effect of Sal A from mortality rate,electrocardiogram(ECG),heart function,myocardial infarction index,serum myocardial enzymes and explored its possible mechanisms from inflammatory,antioxidant and cells apoptosis.RESULTS Sal A can dose-dependently enhanced the heart function of myocardial infarction mice,reduced the heart index,inhibited the myocardial enzyme leakage,showed obvious myocardial protection effects.ELISA results showed that Sal A can reduce the expression of myocardial inflammatory cytokines such as IL-6,TNF-α.Western blotting confirmed that Sal A can increase the expression of anti-apoptotic proteins Bcl-2,reduce the expression of apoptosis protein Bax,and raise the phosphorylation level of PI3K and Akt.CONCLUSION Sal A have displayed significant protective effect against isoproterenol-induced myocardial infarction and its mechanism may be related to increasing of PI3K/Akt signal pathway and inhibition of cell apoptosis and inflammatory reaction.展开更多
The trace element selenium(Se)occurs naturally throughout the earth.Se deficiency has been linked to impaired breast health and other diseases in human and animals.Compared to severe Se deficiency,marginal dietary Se ...The trace element selenium(Se)occurs naturally throughout the earth.Se deficiency has been linked to impaired breast health and other diseases in human and animals.Compared to severe Se deficiency,marginal dietary Se deficiency accusers more frequently in low-Se regions.Therefore,to investigate the Se status and inflammatory response of the mammary gland under marginal dietary Se levels,an lipopolysaccharide(LPS)induced mouse mastitis model was established.Mice were fed with moderate Se diet(0.087 mg•kg^(-1) Se),adequate Se diet(0.15 mg•kg^(-1) Se)or excessive Se diet(1.5 mg•kg^(-1) Se)for 60 days.Se status and inflammatory factors were investigated.Results showed that the Se status of mammary gland correlated with dietary Se levels.Marginal Se deficiency exacerbated mammary tissue histopathology;increased the mRNA level of inflammatory genes tumor necrosis factor alpha(TNF-α),interleukin-1β(IL-1β)and cyclooxygenase-2(COX-2);and enhanced the phosphorylation of NF-κB p65 in mammary gland tissues.Supplementation of Se in diet higher than recommended levels reduced the inflammatory reaction of mammary glands in LPS-induced mastitis model and provided a protective effect.展开更多
Resistance to cancer therapy continues to be a major limitation for the successful treatment of cancer. There are many published studies on therapy resistance in breast and prostate cancers; however, there are current...Resistance to cancer therapy continues to be a major limitation for the successful treatment of cancer. There are many published studies on therapy resistance in breast and prostate cancers; however, there are currently no data on molecular markers associated with resistance. The conflicting data were reported regarding the AKT/m-TOR signaling pathway components as markers predicting resistance. The AKT/m-TOR signaling pathway is involved in the development of many human cancers; its activation is related to cell proliferation, angiogenesis, apoptosis, as well as to therapy resistance. Molecular alterations in the AKT/m-TOR signaling pathway provide a platform to identify universal markers associated with the development of resistance to cancer therapy.展开更多
Aim Shengmai injection (SMI) , a Chinese patent medicine deprived from an ancient Chinese herbal compound Shengmai san, which is used extensively for the treatment of cardiovascular and cerebrovascular disease in cl...Aim Shengmai injection (SMI) , a Chinese patent medicine deprived from an ancient Chinese herbal compound Shengmai san, which is used extensively for the treatment of cardiovascular and cerebrovascular disease in clinic. To determine the neuroprotective effect of SMI, the effect and the relevant mechanism of SMI had been inves- tigated on cerebral ischemia-reperfusion injury in mice. Methods Right middle cerebral artery was occluded by in- serting a thread through intemal carotid artery for 1 h, and then reperfusion for 24 h in mice. Neuroprotective effect was testified using transmission electron microscopic examination, evaluation of infarct volume and neurological defi- cits. Related mechanism was evaluated by western blotting. The SMI was injected intraperitoneally after ischemia for 1 h at doses of 1.42, 2. 84 and 5.68 g · kg^-1. The control group received saline as vehicle of SMI. Results SMI ( 1.42, 2. 84 and 5. 68 g · kg^-1) could significantly reduced the infarct volume, SMI (5.68 g · kg^-1) could signifi- cantly improved the neurological deficits, as well as the neuron's morphology change. SMI (5.68 g · kg^-1) could significantly inhibited the autophagy-related proteins: Beclinl and LC3. SMI (5. 68 g · kg^-1) remarkably inhibited the phosphorylation of adenosine monophosphate activated protein kinase (AMPK), and down-regulated the phospho- rylation of mammalian target of rapamycin (roTOR) and Jun N-terminal kinase (JNK) after 24 h reperfusion. Con-clusion The results indicated that SMI elicits potent protection against cerebral ischemia/reperfusion injury, which may partly be due to the inhibition in autophagy and related signal pathways.展开更多
文摘In order to clarify the mechanism of action of licorice flavonoids in alleviating bone loss caused by osteoporosis,this study compared the effects of four glycyrrhiza flavonoids,naringenin,liquiritigenin,isoliquiritigenin,and licochalcone A,on osteogenic differentiation and mineralization by molecular docking simulation,alkaline phosphatase(ALP)activity and osteocalcin(OCN)content assays,and Runt-related transcription factor 2(Runx2)expression,and explored their potential molecular mechanisms.The results of molecular docking showed that the docking score of liquiritigenin with the estrogen receptor(ER)was the highest.All four flavonoids up-regulated ALP activity and OCN concentration in MC3T3-E1 cells,thereby elevating the mineralization level,among which liquiritigenin was the most effective.Moreover,treatment with a phosphatidylinositol-3-kinase(PI3K)inhibitor(LY294002)inhibited liquiritigenin from inducing increased phosphorylation levels in the PI3K/protein kinase B(AKT)signaling pathway and up-regulation of Runx2 expression,suggesting that PI3K and AKT were involved in osteogenic action.Liquiritigenin reversed bone mineral density loss in a zebrafish osteoporosis model.These findings suggest that liquiritigenin has the most significant osteogenic effect among the four estrogen-like flavonoids,stimulating osteoblast differentiation and bone mineralization through the activation of Runx2 via the PI3K/AKT signaling pathways.In conclusion,this study highlights the great potential of liquiritigenin for preventing and treating osteoporosis.
基金supported by National Natural Science Foundation of China(81330081,81473223and 81673444)Anhui Province Postdoctoral Science Foundation(2016B134)
文摘G protein coupled receptors(GPCRs)are transmembrane receptor proteins,which allow signals to transfer across membrane.GPCRs include a large number of receptors,different receptors mediated different signaling pathways of GPCRs-adenylyl cyclase(AC)-cyclic adenosine 3',5'-monophosphate(c AMP),including β2 adrenergic receptors(β2-ARs)-AC-c AMP signaling pathways,E-prostanoid2/4(EP2/4)-AC-cA MP signaling pathways.Regulatory proteins,such as G protein coupled receptor kinases(GRKs)andβ-arrestins,play important modulatory roles in GPCRs signaling pathway.GPCRs signaling pathway and regulatory proteins implicate the pathogenesis process of inflammatory and immune response.Rheumatoid arthritis(RA)is an autoimmune disease characterized by synovitis and accompanied with inflammatory and abnormal immune response.This article review the advances on GPCRs signaling pathway implicating in the inflammatory and immune response of RA.
文摘The treatment and signaling pathway regulation effects of kidney-tonifying traditional Chinese medicine on osteoporosis have been widely studied,but without a systematic summary currently.This review comprehensively collected and analyzed the traditional Chinese medicine on the treatment and signaling pathway regulation of osteoporosis in recent ten years,such as Epimedium,Drynariae Rhizoma,Cnidium,Eucommia,Psoralen and Dipsacus.Based on the existing findings,we concluded the following conclusions:(1)kidney-tonifying traditional Chinese medicine treats osteoporosis mainly through BMP-Smads,Wnt/β-catenin,MAPK,PI3K/AKT signaling pathway to promote osteoblast bone formation and through OPG/RANKL/RANK,estrogen,CTSK signaling pathway to inhibit osteoclasts of bone resorption.(1)Epimedium,Drynariae Rhizoma,Cnidium and Psoralen up-regulate the key proteins and genes of BMP-Smads and Wnt/β-catenin signaling pathways to promote bone formation.(2)Epimedium,Drynariae Rhizoma,Cnidium,Eucommia,Psoralen,Dipsacusinhibit the bone resorption by mediating the OPG/RANKL/RANK signaling pathway.(2)Kidney-tonifying traditional Chinese medicine prevent and treat osteoporosis through a variety of ways:Icariin,Naringin,Osthol,Psoralen can regulate BMP-Smads,Wnt/β-catenin signaling pathway to promote bone formation,but also activate OPG/RANKL/RANK,CTSK and other signaling pathway to inhibit bone resorption.(3)The crosstalk of the signaling pathways and the animal experiments of the traditional Chinese medicine on the prevention and treatment of osteoporosis as well as their multi-target mechanism and comprehensive regulation need further clarification.
文摘Objective To investigate the effect of mucin 1(MUC1)on the proliferation and apoptosis of nasopharyngeal carcinoma(NPC)and its regulatory mechanism.Methods The 60 NPC and paired para-cancer normal tissues were collected from October 2020 to July 2021 in Quanzhou First Hospital.The expression of MUC1 was measured by real-time quantitative PCR(qPCR)in the patients with PNC.The 5-8F and HNE1 cells were transfected with siRNA control(si-control)or siRNA targeting MUC1(si-MUC1).Cell proliferation was analyzed by cell counting kit-8 and colony formation assay,and apoptosis was analyzed by flow cytometry analysis in the 5-8F and HNE1 cells.The qPCR and ELISA were executed to analyze the levels of TNF-αand IL-6.Western blot was performed to measure the expression of MUC1,NFкB and apoptosis-related proteins(Bax and Bcl-2).Results The expression of MUC1 was up-regulated in the NPC tissues,and NPC patients with the high MUC1 expression were inclined to EBV infection,growth and metastasis of NPC.Loss of MUC1 restrained malignant features,including the proliferation and apoptosis,downregulated the expression of p-IкB、p-P65 and Bcl-2 and upregulated the expression of Bax in the NPC cells.Conclusion Downregulation of MUC1 restrained biological characteristics of malignancy,including cell proliferation and apoptosis,by inactivating NF-κB signaling pathway in NPC.
基金National Natural Science Foundation of China(81760658).
文摘OBJECTIVE To investigate the protective effect of icariin(ICA) on lipopolysaccharide(LPS)-induced BV2 microglia injury,and to clarify the role of nuclear factor erythroid 2-related factor 2(Nrf2) signaling pathway in BV2 microglia-mediated neuroinflammation.METHODS BV2 microglia were randomly divided into control,ICA(0.1 μmol·L^(-1)),LPS(1 mg·L^(-1)),LPS + ICA(0.01 μmol·L^(-1)),and LPS + ICA(0.1 μmol·L^(-1))groups.BV2 microglia were treated with ICA for 30 min and then treated with LPS for 24 h.MTT assay was used to determine the cells survival rate,Griess kit and ELISA kits were used to detect the contents of NO,IL-1β and IL-18 in the culture supernatant,Western blotting was used to detect the expression of Nrf2,HO-1 and NQO1.Real time RT-PCR was used to detect the expression of Nrf2,HO-1 and NQO1 after ICA addition for 2,6 and 24 h.And immunofluorescence was used to observe the activation of Nrf2.RESULTS ICA reduced LPS-induced NO,IL-1β and IL-18 production in the culture supernatant,and ICA increase LPS-induced mRNA and protein expression of Nrf2 signaling pathway.CONCLUSION ICA protects LPS induced neuroinflammation by regulating Nrf2 signaling pathway.
基金supported by the National Natural Science Foundation of China ( 31670957)
文摘Osteoarthritis(OA)is an inflammatory disease involving the joints that is prevalent in the global aging population.The purpose of this study is to determine whether irisin can attenuate osteoarthritis(OA)progression in anterior cruciate ligament transection(ACLT)mice models and the mechanism of irisin therapy effect on OA by increase the resistance of apoptosis in MLO-Y4 cells induced by mechanical stretch in vitro.Methods For in vivo study,3-month-old male C57BL/6 J mice were randomized to three groups,sham-operated,anterior cruciate ligament transection(ACLT)-operated treated with vehicle,and ACLT-operated treated with irisin by intraperitoneal injection once a week.Cartilage erosion was observed by HE staining.Osteoarthritis Research Society International(OARSI)scores were evaluated according to the safranin O stai-ning.The microstructure of tibia cortical bone,trabecular bone,and subchondral bone was analyzed by micro-CT and the bone histomorphometry has been administrated including mineral apposition rate(MAR).Edu staining and cck-8 were used for the detection of the proliferation of MLO-Y4 cells.For mechanical stress,cells were seeded on the collagen-I coated chamber subjected with a peak biaxial stretch of 20%at 1 Hz for 16 hours to induce apoptosis.Flow cytometry was used for the detection of apoptosis and cell cycle.TUNNEL was used for staining the apoptotic cells and rt-PCR was applied for quantifying the expression of mRNA such as Bax,Bcl-2,SOST,c-myc,Opg.Western blot was utilized to confirm the mechanism of how irisin decrease the osteocyte apoptosis.Results In vivo,irisin can attenuate articular cartilage degeneration.Irisin maintains the proportion of hyaline cartilage and calcified cartilage and keep fewer cartilage erosions in ACLT-operated mice.For immunohistochemical(IHC)staining,irisin reduced the expression of caspase3,Bax and matrix metalloproteinase-13 in both cartilage and subchondral bone.Irisin-treated ACLT group shows higher Trabecular number(Tb.N)and bone volume fraction(BV/TV)compared to the vehicle-treated ACLT group.In vitro, irisin significantly increased the proliferation of MLO-Y4 cells detected by Edu and Ki67 staining,and irisin can protect the cells from both mechanical stretchinduced apoptosis detected by FITC-PI flow cytometry and maintain the cell activity by regulating the expression of Bax,Bcl-2,and c-myc.Transcriptome sequencing shows that irisin significantly activates the MAPK signaling pathway and we confirm the result by western blot:irisin effectively activates the Erk signaling pathway through phosphorylation and has a certain activation effect on p38 signaling pathway,no activation was observed for FAK signaling pathway.Conclusions Irisin can attenuate the progression of OA by decrease the apoptosis of osteocyte,which can improve the microarchitecture of subchondral bone.Erk pathway activation plays an important role in reducing the apoptosis of osteocyte.
文摘Objective Apoptosis is recognized as an important mechanism in contrast-induced nephropathy(CIN).Acupuncture and moxibustion,the auxiliary treatment in China,are effective interventions for cell apoptosis in many ischemic diseases.In our previous study,we found acupuncture and moxibustion could prevent CIN.The objective of this research is to study the mechanism of acupuncture and moxibustion on tubular epithelial cell apoptosis in diabetic CIN rats.
基金The project supported by National Natural Science Foundation of China(81102445 and81670456)Beijing Natural Science Foundation(7162132)the PUMC Youth Fund and the Fundamental Research Funds for the Central Universities(33320140069)
文摘Vascular remodeling,which can be found in atherosclerosis,restenosis after angioplasty,hypertension,and some other frequent and serious chronic diseases.Smooth muscle cell(SMC)phenotype change,which has been described as converting from a contractile state into a synthetic phenotype,is a crucial event during vascular remodeling.Recently,micro RNAs(mi RNAs)a kind of small non-coding RNA molecules,has been proven to target critical genes of cell signaling pathways to regulate SMC phenotypic change.By searching the Pub Med,Embase,reviews,and reference listsof relevant papers,we systematically carried out a review of the literature to provide an overview of the mi RNAs and their target genes in cell signaling pathways,focus inthe pathways involving in SMC phenotype change.To be specific,mi RNAs that regulate genes involved in the MAPK signaling pathways(such as:mi R-155,mi R-92a,mi R-424/503,mi R-133,mi R-181b,mi R-31,mi R-1298,mi R-132,mi R-200c and mi R-483-3p),mi RNAs target genes involved in the TGF-βsignaling pathways(including mi R-24,mi R-17/92 cluster,mi R-599,mi R-21 and mi R-143/145),mi RNAs target the genes involved in the AMPK signaling pathways including mi R-144/451 and mi R-195,mi RNAs target the genes involved in the PI3K-Akt signaling pathways(including mi R-138,mi R-34c,mi R-223,mi R-761,mi R-10a,mi R-146a),mi R-199a-5ptargets the genes involved in the Wnt signaling pathways mi RNAs(mi R-221/222,mi R-15b,mi R-24/29a,mi R-224)involved in the PDGF signaling pathways and some mi RNAs(mi R-638,mi R-328,mi R-365,mi R-663,mi R-29b,mi R-130,mi R-142-5p,mi R-424/322)which regulate SMC phenotype change by other corresponding targets were in detailed discussed in our review.Exploring the regulation of miR NAs in key cellsignaling pathways-mediatedvascular remodeling wil have momentous impact on identifying novel therapeutic targets for its associated disease.
基金National Natural Science Foundation of China(81573813,81173598)Sichuan Provincial Admin⁃istration of Traditional Chinese Medicine of China(2021MS447)+1 种基金the Excellent Talent Program of Chengdu University of Traditional Chinese Medicine of China(YXRC2019002,ZRYY1917)Open Research Fund of the State Key Labora⁃tory of Southwestern Chinese Medicine Resources of China(2020XSGG006)。
文摘OBJECTIVE To investigate the therapeutic effect of scutellarin on colitis-associated cancer(CAC)and its underlying mechanism based on Wnt/β-catenin signaling pathway.METHODS The mouse model of CAC was established by azomethane oxide(AOM)and sodium dextran sulfate(DSS),followed by scutellarin treatment,with recording the body weight,diarrhea and hematochezia.After sacrificing the mice,the colorectal length and colorectal tumor were assessed.The levels of pro-inflammatory factors TNF-αand IL-6 in mice′s sera were measured by the enzyme-linked immunosorbent assay(ELISA).The colorectal lesions were appraised by hematoxylin and eosin(H&E)staining.Theβ-catenin level in CAC tissues was probed by immunofluorescent analysis.The apoptosis-related genes Bax and Bcl-2,and Wnt signaling pathway-related genesβ-catenin,GSK-3β,TCF4,c-Myc and cyclin D1 were detected by real-time quantitative RT-PCR(RT-qPCR).Finally,Western blotting analysis(WB)was employed to examine the expressions of the apoptosis and Wnt signaling pathway-related proteins.RESULTS Scutellarin significantly improved AOM/DSS-caused weight loss,colorectal length shortening,and tumor growth in mice(P<0.01).Meanwhile,colorectal lesions could be substantially alleviated by scutellarin.ELISA results showed that the levels of pro-inflammatory factors TNF-αand IL-6 were drastically lessened(P<0.01).Scutellarin also sharply inhibited the nuclear translocation ofβ-catenin,as evidenced by the reduction in the nuclear level ofβ-catenin protein.In addition,scutellarin attenuated the mRNA expression of Wnt signaling pathway-relatedβ-catenin,TCF4,c-Myc and cyclin D1,whereas it heightened GSK-3βmRNA level.These results were consolidated by WB analysis,which indicated that scutellarin could mitigate the protein levels of phospho-GSK-3β,β-catenin,TCF4,c-Myc and cyclin D1,with the increase in GSK-3βprotein in CAC tissue.Moreover,scutellarin could induce the apoptosis of CAC,demonstrated by enhanced expression of Bax and diminished expression of Bcl-2 in both mRNA and protein levels.CONCLUSION Scutellarin may ameliorate colitis-associated colorectal cancer by weakening Wnt/β-catenin signaling cascade.
基金National Natural Science Foundation of China(81573813,81173598)Sichuan Provincial Admin⁃istration of Traditional Chinese Medicine of China(2021MS447)+1 种基金Excellent Talent Program of Chengdu University of Tra⁃ditional Chinese Medicine of China(YXRC2019002,ZRYY1917)and Open Research Fund of State Key Laboratory of Southwestern Chinese Medicine Resources of China(2020XSGG006)。
文摘OBJECTIVE To investigate the inhibition and mechanism of berberine on human colorectal cancer HCT116 cells through canonical Hedgehog signaling pathway.METHODS The effect of berberine on cell morphology was observed by microscopy.MTT colorimetric assay,cell scratch experiment,colony formation assay and Hoechest/PI staining were utilized to detect the activities of berberine on cell viability,cell migration and cell apoptosis.Flow cytometry was applied to examine the cell apoptosis.The effects of berberine on caspase-3 and caspase-9 were detected by caspase activity detection kit.The expressions of Hedgehog signaling pathway-related proteins SHH,GLI1,PTCH1,SMO,SUFU,apoptosis-related proteins Bax and Bcl-2 as well as cell cycle-related proteins cyclin D1 were detected by Western blotting.Additionally,quantitative real time RT-PCR was employed to assess the mRNA expression levels of Hedgehog signaling pathway-related genes SHH,GLI1,PTCH1,SMO,SUFU,apoptosis-related genes Bax and Bcl-2 as well as cell cycle-related genes cyclin D1.RESULTS Berberine sharply altered the morphology of human colorectal cancer HCT116 cells,demonstrated by that migration ability of HCT116 cells was reduced significantly and the nuclei were densely stained.Berberine could induce apoptosis in a dose-dependent manner.The activities of caspase-3 and caspase-9 were increased prominently.The expression levels of Hedgehog signaling pathway-related protein SUFU and apoptosis-related protein Bax were augmented substantially.The expression levels of Hedgehog signaling pathway-related proteins SHH,GLI1,PTCH1,SMO,apoptosis-related protein Bcl-2 as well as cell cycle-related genes cyclin D1 were markedly lessened.Besides,the mRNA expression levels of Hedgehog signaling pathway-related gene SUFU and apoptosis-related gene Bax were augmented substantially.The mRNA expression levels of Hedgehog signaling pathway-related genes SHH,GLI1,PTCH1,SMO,apoptosis-related gene Bcl-2 as well as cell cycle-related gene cyclin D1 were markedly lessened.CONCLUSION Berberine,which is the main component of coptidis rhizoma,can remarkably restrain the growth and proliferation,promote apoptosis of human colorectal cancer cells HCT116,and the underlying mechanism may be involved in suppressing the activity of the Hedgehog signaling pathway.
文摘The mammalian target of rapamycin (mTOR) signaling pathway is evolutionarily conserved, mTOR can integrate and converge a wide range of signals, including intracellular and extracellular nutrients, growth factors, energy and stress conditions, and has a crucial role in the vertebrate growth control. This review analyzed the main components and regulated factors of TOR signaling pathway, explained functions and mechanisms of roTOR during the individual growth, the development and its dynamic role, revealed its additional functions beyond the cell growth control, and finally reviewed the tissue specificity and time specificity of mTOR signaling pathway, and its regulation on sexual differentiation, tissue differentiation and organogenesis in the individual development.
基金National Natural Science Foundation of China(81573813,81173598)Sichuan Provincial Admin⁃istration of Traditional Chinese Medicine of China(2021MS447)+1 种基金Excellent Talent Program of Chengdu University of Tra⁃ditional Chinese Medicine of China(YXRC2019002,ZRYY1917)and Open Research Fund of the State Key Laboratory of Southwestern Chinese Medicine Resources of China(2020XSGG006)。
文摘OBJECTIVE To investigate the effect of scutellarin on the apoptosis of human colorectal cancer cells via the Hippo signaling pathway in vitro.METHODS MTT colorimetric method was used to detect the influence of scutellarin on the survival rate of HCT116 cells.And the effect of scutellarin at various concentrations on cell morphology was observed by microscopy.Cell scratch experiment was used to detect the influence of scutellarin on the migration of HCT116 cells.Hoechst33342/PI double staining method was used to detect the effect of scutellarin on the apoptosis of HCT116 cells.Western blotting method was used to assess the action of scutellarin on the expressions of Hippo signaling pathway-related proteins Mst1,Lats1,YAP1,p-YAP(Ser127),TAZ,and its downstream effector proteins c-Myc and cyclin D1,as well as apoptosis-related proteins Bcl-2 and Bax in HCT116 cells.RESULTS Scutellarin significantly affected the morphology of HCT116 cells and reduced the survival rate of HCT116 cells.Hoechst33342/PI double staining showed that scutellarin effectively induced the apoptosis of HCT116 cells.Western blotting analysis showed that the expression levels of Hippo signaling pathway-related proteins Mst1,Lats1,YAP1,TAZ and its downstream effector proteins c-Myc,cyclin D1 were down-regulated in a concentration-dependent manner by scutellarin,and the expression of p-YAP(ser127)was up-regulated.Moreover,scutellarin substantially lessened the expression level of apoptosis-related protein Bcl-2,and promoted the protein level of Bax.CONCLUSION Scutellarin may inhibit the proliferation and migration of HCT116 cells,while induce its apoptosis,potentially by activation of Hippo signaling pathway.
基金National Natural Science Foundation of China(8157381381173598)+1 种基金Excellent Talent Program of Chengdu University of Traditional Chinese Medicine(YXRC2019002)Fund of Scientific Research Innovation Team Construction in Sichuan Provincial University(18TD0017)
文摘OBJECTIVE To investigate the inhibitory effect of scutellarin on the self-renewal and differentiation of HT-29 cells-derived cancer stem-like cells(HT-29CSC)in vitro and in vivo,and to explore its mechanism.METHODS The effect of scutellarin on the growth of HT-29CSC was determined by 3D Culture assay.The effect of scutellarin on growth and transformation of HT-29CSC was probed by soft agar colony formation assay.The effect of scutellarin on the differentiation of HT-29CSC was determined by serum induction differentiation assay in vitro.The effects of scutellarin on the expressions of marker gene Lgr5,target gene c-Myc,proliferation gene CK20 and Nanog gene were measured by quantitative real-time RT-PCR.Investigate the effect of scutellarin on the expression of c-Myc,Gli1,and Lgr5 protein by Western blotting.A subcutaneous xenograft model of colon cancer in nude mice was established and administered by intraperitoneal injection.The change of body weight and tumor size of nude mice were observed every two days.Investi⁃gate the effects of scutellarin on the growth of xenograft tumors in nude mice.The expression of CD133,Lgr5,Gli1,Ptch1,c-Myc,Ki67,CK20,Nanog gene in tumors were measured by quantitative real-time RT-PCR.The expression of c-Myc,Gli1,Lgr5,CD133,Ki67 protein were measured by Western blotting.RESULTS Scutellarin can inhibit the growth of HT-29CSC in 3D culture.Compared with the solvent control group,scutellarin can significantly inhibit the growth and transformation and differentiation of HT-29CSC in vitro(P<0.01).The expression levels of marker genes Lgr5,target gene c-Myc,proliferation gene CK20 and Nanog in HT-29CSC were down-regulated by scutellarin.Scutellarin can reduce the expression of c-Myc,Gli1,and Lgr5 protein in HT-29CSC.Scutellarin can inhibit the growth of colon cancer xenografts,lower CD133,Lgr5,Gli1,Ptch1,c-Myc,Ki67,CK20,and Nanog mRNA level of xenograft tumors,reduce the expression of c-Myc,Gli1,Lgr5,CD133,and Ki67 protein of xenograft tumors in nude mice.CONCLUSION Scutellarin,which is the main component of scutellaria barbata,can inhibit the differentiation of HT-29CSC and the mechanism is to inhibit the activity of Hedgehog signaling pathway.
基金Supported by the National Natural Science Foundation of China(31872377)。
文摘The study was conducted to investigate the effect and mechanism of dietary quercetin supplementation on protein utilization of Arbor Acres(AA)broilers.A total of 2401-day-old AA broilers were randomly allocated to four treatments with six replicates,comprising 10 broilers each replicate(60 broilers per treatment).Birds were fed either a corn-soybean meal basal diet without quercetin(control)or a basal diet supplemented with 0.2,0.4 or 0.6 g of quercetin per kg feed,and the trial lasted 42 days.Dietary quercetin supplementation tended to increase the apparent metabolic rate of protein(p=0.076)and the content of serum albumin(p=0.062)in AA broilers.Compared with the control,dietary quercetin supplementation increased the contents of protein in breast muscle(p<0.05)and in thigh muscle(p=0.053).In addition,quercetin up-regulated mRNA expression of insulin-like growth factor 1(IGF-1),phosphatidylinositol 3-kinase(PI3K),target of rapamycin(TOR),ribosomal protein S6 kinase 1(S6K1),eukaryotic translation initiation factor 4E(eIF4E),eukaryotic translation initiation factor 4G(eIF4G),eukaryotic elongation factor 2(eEF2)and eukaryotic translation initiation factor 4B(eIF4B)genes and down-regulated mRNA expression of eukaryotic elongation factor 2 kinase(eEF2K)and eukaryotic initiation factor 4E binding protein1(4E-BP1)genes in breast muscle,thigh muscle and liver of AA broilers(p<0.05).The present results suggested that dietary quercetin supplementation enhanced protein utilization in broilers by activating TOR signaling pathway.
基金supported by National Natural Science Foundation of China(81330081,81473223and 81673444)Anhui Province Postdoctoral Science Foundation(2016B134)
文摘OBJECTIVE This study was to investigate the effects of CP-25 on the functions of activated human B cells through regulating BAFF and TNF-alpha signaling.METHODS B cells from peripheral blood mononuclear cells(PBMCs) of normal human were isolated using magnetic cell separation(MACS) by a positive selection.B cells(107 cells·mL^(-1)) were stimulated by BAFF(100 ng·mL^(-1))or TNF-alpha(100 ng·mL^(-1)) for two hours,and then were treated with CP-25(10-5 mol·L^(-1)) or Rituximab(5 μg·mL^(-1)) or Etanercept(10 μg·mL^(-1)).B cell proliferation was detected by CCK-8.B cell subsets and BAFF receptors(BAFFR,BCMA and TACI) were analyzed by flow cytometry.The expression of TNFR1 and TNFR2 on B cells was analyzed by flow cytometry.The expression of MKK3,MKK6,P-p38,P-p65,TRAF2 and p100/52 was analyzed by Western blotting.RESULTS CP-25 inhibited B cells proliferation stimulated by BAFF or TNF-alpha.CP-25,Rituximab and Etanercept reduced the percentage and numbers of CD19^+B cells,CD19^+CD20^+B cells,CD19^+CD27^+B cells and CD19^+CD20^+CD27^+B cells induced by BAFF or TNF-alpha.CP-25 down-regulated the high expression of BAFFR,BCMA and TACI stimulated by BAFF or TNF-alpha.CP-25,Rituximab and Etanercept down-regulated significantly the expression of TNFR1 and TNFR2 on B cell stimulated by BAFF or TNF-alpha.CP-25,Rituximab and Etanercept down-regulated the expression of MKK3,P-p38,P-p65,TRAF2 and p52 in B cells stimulated by BAFF and the expression of TRAF2 and P-p65 in B cells stimulated by TNF-alpha.CONCLUSION CP-25 regulated moderately activated B cells function by by regulating the classical and alternative NF-κB signaling pathway mediated by BAFF and TNF-alpha-TRAF2-NF-κB signaling pathway.This study suggests that CP-25 may be a promising anti-inflammatory immune and soft regulation drug.
基金National Natural Science Foundation of China(81573813,81173598)Sichuan Provincial Admin⁃istration of Traditional Chinese Medicine of China(2021MS447)+1 种基金Excellent Talent Program of Chengdu University of Tra⁃ditional Chinese Medicine of China(YXRC2019002,ZRYY1917)Open Research Fund of the State Key Laboratory of Southwestern Chinese Medicine Resources of China(2020XSGG006)。
文摘OBJECTIVE To investigate the pharmacological effect of ursolic acid(UA)on colitis-associated colorectal cancer(CAC)and its underlying mechanism based on the Wnt signaling pathway.METHODS The CAC model in mice was established by azoxymethane(AOM)combined and dextran sulfate sodium salt(DSS),accompanied by treatment with various dosages of UA and concomitant appraisal of body weight,stool and physical state of the mice.After the sacrifice of the mice,the tumor and length of the colorectum were measured,followed by retrieval of the liver,spleen,thymus and tumor tissue for downstream assays.The levels of inflammatory factors interleukin-6(IL-6),IL^(-1)βand C-reactive protein(CRP)in the tumor and serum were examined by enzyme-linked immunosorbent assay(ELISA).The pathological changes of colorectal tissues were observed by HE staining.The levels in tumors of Wnt/β-catenin signaling pathway-related proteins Wnt4,GSK-3β,β-catenin,TCF4,LEF1,c-Myc,cyclin D1 and apoptosis-related protein Bcl-2 were assayed by immunohistochemistry(IHC).The mRNA expressions of Wnt4,GSK-3β,β-catenin,TCF4,LEF1,c-Myc,cyclin D1,Bcl-2,Bax,caspase-9 and caspase-3 in tumors were detected by real-time quantitative RT-PCR(RT-qPCR).The protein levels of Wnt4,GSK-3β,β-catenin,TCF4,LEF1,c-Myc,cyclin D1,phospho-β-catenin,phospho-GSK-3β,Bcl-2 and Bax in tumors were probed by analyzed by Western blotting(WB).Also,RNA-seq was employed to assess the gut microbiota in the mice.RESULTS UA significantly ameliorated the symptoms of AOM/DSS-induced mouse CAC,evidenced by improved physical state,body weight,survival rate,colorectal length,the mass of liver,thymus,spleen,and decreased CAC load and colorectal mass.UA attenuated the levels of IL-6,IL^(-1)βand CRP in the mouse serum and colorectal tumor in a dose-dependent manner.HE staining showed that UA lessened carcinogenesis in the colorectum,with lower infiltration of lymphocytes,versus the control.IHC indicated that UA mitigated the expression of Wnt4,β-catenin,TCF4,LEF1,c-Myc,cyclin D1,Bcl-2,and promoted the GSK-3βexpression,compared with the control.Furthermore,UA diminished the mRNA expressions of Wnt4,β-catenin,TCF4,LEF1,c-Myc,cyclin D1,Bcl-2,and heightened the mRNA levels of GSK-3β,caspase-3,capase-9 and Bax in CAC.The results of mRNA expressions were verified by WB analysis,which revealed that UA impeded the protein expression of Wnt4,β-catenin,c-Myc,cyclin D1,Bcl-2,TCF4,LEF1,and elevated the protein levels of GSK-3βand Bax,phospho-β-catenin in mouse CAC.In addition,UA substantially ameliorated the gut microbiota to store the metabolic function in the mice with CAC.CONCLUSION Ursolic acid may protect against CAC,potentially by downregulation of Wnt/β-catenin signaling pathway activity and restoration of gut microbiota.
基金The project supported by National Natural Science Foundation of China(81573645,81603101,81473383)
文摘OBJECTIVE To investigate the protective effect of salvianolic acid A(Sal A)on isoproterenol-induced myocardial infarction in mice and its possible mechanisms.METHODS The mice were subcutaneously injected with isopropranol(ISO 8 mg·kg-1)to induce myocardial infarction and evaluated the myocardial protective effect of Sal A from mortality rate,electrocardiogram(ECG),heart function,myocardial infarction index,serum myocardial enzymes and explored its possible mechanisms from inflammatory,antioxidant and cells apoptosis.RESULTS Sal A can dose-dependently enhanced the heart function of myocardial infarction mice,reduced the heart index,inhibited the myocardial enzyme leakage,showed obvious myocardial protection effects.ELISA results showed that Sal A can reduce the expression of myocardial inflammatory cytokines such as IL-6,TNF-α.Western blotting confirmed that Sal A can increase the expression of anti-apoptotic proteins Bcl-2,reduce the expression of apoptosis protein Bax,and raise the phosphorylation level of PI3K and Akt.CONCLUSION Sal A have displayed significant protective effect against isoproterenol-induced myocardial infarction and its mechanism may be related to increasing of PI3K/Akt signal pathway and inhibition of cell apoptosis and inflammatory reaction.
基金Supported by the Natural Science Foundation of the Heilongjiang Province of China(C2016003)China Postdoctoral Science Foundation(2015M581415)Heilongjiang Postdoctoral Fund(LBH-Z15005)。
文摘The trace element selenium(Se)occurs naturally throughout the earth.Se deficiency has been linked to impaired breast health and other diseases in human and animals.Compared to severe Se deficiency,marginal dietary Se deficiency accusers more frequently in low-Se regions.Therefore,to investigate the Se status and inflammatory response of the mammary gland under marginal dietary Se levels,an lipopolysaccharide(LPS)induced mouse mastitis model was established.Mice were fed with moderate Se diet(0.087 mg•kg^(-1) Se),adequate Se diet(0.15 mg•kg^(-1) Se)or excessive Se diet(1.5 mg•kg^(-1) Se)for 60 days.Se status and inflammatory factors were investigated.Results showed that the Se status of mammary gland correlated with dietary Se levels.Marginal Se deficiency exacerbated mammary tissue histopathology;increased the mRNA level of inflammatory genes tumor necrosis factor alpha(TNF-α),interleukin-1β(IL-1β)and cyclooxygenase-2(COX-2);and enhanced the phosphorylation of NF-κB p65 in mammary gland tissues.Supplementation of Se in diet higher than recommended levels reduced the inflammatory reaction of mammary glands in LPS-induced mastitis model and provided a protective effect.
文摘Resistance to cancer therapy continues to be a major limitation for the successful treatment of cancer. There are many published studies on therapy resistance in breast and prostate cancers; however, there are currently no data on molecular markers associated with resistance. The conflicting data were reported regarding the AKT/m-TOR signaling pathway components as markers predicting resistance. The AKT/m-TOR signaling pathway is involved in the development of many human cancers; its activation is related to cell proliferation, angiogenesis, apoptosis, as well as to therapy resistance. Molecular alterations in the AKT/m-TOR signaling pathway provide a platform to identify universal markers associated with the development of resistance to cancer therapy.
文摘Aim Shengmai injection (SMI) , a Chinese patent medicine deprived from an ancient Chinese herbal compound Shengmai san, which is used extensively for the treatment of cardiovascular and cerebrovascular disease in clinic. To determine the neuroprotective effect of SMI, the effect and the relevant mechanism of SMI had been inves- tigated on cerebral ischemia-reperfusion injury in mice. Methods Right middle cerebral artery was occluded by in- serting a thread through intemal carotid artery for 1 h, and then reperfusion for 24 h in mice. Neuroprotective effect was testified using transmission electron microscopic examination, evaluation of infarct volume and neurological defi- cits. Related mechanism was evaluated by western blotting. The SMI was injected intraperitoneally after ischemia for 1 h at doses of 1.42, 2. 84 and 5.68 g · kg^-1. The control group received saline as vehicle of SMI. Results SMI ( 1.42, 2. 84 and 5. 68 g · kg^-1) could significantly reduced the infarct volume, SMI (5.68 g · kg^-1) could signifi- cantly improved the neurological deficits, as well as the neuron's morphology change. SMI (5.68 g · kg^-1) could significantly inhibited the autophagy-related proteins: Beclinl and LC3. SMI (5. 68 g · kg^-1) remarkably inhibited the phosphorylation of adenosine monophosphate activated protein kinase (AMPK), and down-regulated the phospho- rylation of mammalian target of rapamycin (roTOR) and Jun N-terminal kinase (JNK) after 24 h reperfusion. Con-clusion The results indicated that SMI elicits potent protection against cerebral ischemia/reperfusion injury, which may partly be due to the inhibition in autophagy and related signal pathways.