The massive connectivity and limited energy pose significant challenges to deploy the enormous devices in energy-efficient and environmentally friendly in the Internet of Things(IoT).Motivated by these challenges,this...The massive connectivity and limited energy pose significant challenges to deploy the enormous devices in energy-efficient and environmentally friendly in the Internet of Things(IoT).Motivated by these challenges,this paper investigates the energy efficiency(EE)maximization problem for downlink cooperative non-orthogonal multiple access(C-NOMA)systems with hardware impairments(HIs).The base station(BS)communicates with several users via a half-duplex(HD)amplified-and-forward(AF)relay.First,we formulate the EE maximization problem of the system under HIs by jointly optimizing transmit power and power allocated coefficient(PAC)at BS,and transmit power at the relay.The original EE maximization problem is a non-convex problem,which is challenging to give the optimal solution directly.First,we use fractional programming to convert the EE maximization problem as a series of subtraction form subproblems.Then,variable substitution and block coordinate descent(BCD)method are used to handle the sub-problems.Next,a resource allocation algorithm is proposed to maximize the EE of the systems.Finally,simulation results show that the proposed algorithm outperforms the downlink cooperative orthogonal multiple access(C-OMA)scheme.展开更多
Due to the interdependency of frame synchronization(FS)and channel estimation(CE),joint FS and CE(JFSCE)schemes are proposed to enhance their functionalities and therefore boost the overall performance of wireless com...Due to the interdependency of frame synchronization(FS)and channel estimation(CE),joint FS and CE(JFSCE)schemes are proposed to enhance their functionalities and therefore boost the overall performance of wireless communication systems.Although traditional JFSCE schemes alleviate the influence between FS and CE,they show deficiencies in dealing with hardware imperfection(HI)and deterministic line-of-sight(LOS)path.To tackle this challenge,we proposed a cascaded ELM-based JFSCE to alleviate the influence of HI in the scenario of the Rician fading channel.Specifically,the conventional JFSCE method is first employed to extract the initial features,and thus forms the non-Neural Network(NN)solutions for FS and CE,respectively.Then,the ELMbased networks,named FS-NET and CE-NET,are cascaded to capture the NN solutions of FS and CE.Simulation and analysis results show that,compared with the conventional JFSCE methods,the proposed cascaded ELM-based JFSCE significantly reduces the error probability of FS and the normalized mean square error(NMSE)of CE,even against the impacts of parameter variations.展开更多
基金partially supported by the National Natural Science Foundation of China under Grant 61701064Chongqing Natural Science Foundation under Grant cstc2019jcyj-msxmX0264Sichuan Science and Technology Program under Grant 2022YFQ0017。
文摘The massive connectivity and limited energy pose significant challenges to deploy the enormous devices in energy-efficient and environmentally friendly in the Internet of Things(IoT).Motivated by these challenges,this paper investigates the energy efficiency(EE)maximization problem for downlink cooperative non-orthogonal multiple access(C-NOMA)systems with hardware impairments(HIs).The base station(BS)communicates with several users via a half-duplex(HD)amplified-and-forward(AF)relay.First,we formulate the EE maximization problem of the system under HIs by jointly optimizing transmit power and power allocated coefficient(PAC)at BS,and transmit power at the relay.The original EE maximization problem is a non-convex problem,which is challenging to give the optimal solution directly.First,we use fractional programming to convert the EE maximization problem as a series of subtraction form subproblems.Then,variable substitution and block coordinate descent(BCD)method are used to handle the sub-problems.Next,a resource allocation algorithm is proposed to maximize the EE of the systems.Finally,simulation results show that the proposed algorithm outperforms the downlink cooperative orthogonal multiple access(C-OMA)scheme.
基金supported in part by the Sichuan Science and Technology Program(Grant No.2023YFG0316)the Industry-University Research Innovation Fund of China University(Grant No.2021ITA10016)+1 种基金the Key Scientific Research Fund of Xihua University(Grant No.Z1320929)the Special Funds of Industry Development of Sichuan Province(Grant No.zyf-2018-056).
文摘Due to the interdependency of frame synchronization(FS)and channel estimation(CE),joint FS and CE(JFSCE)schemes are proposed to enhance their functionalities and therefore boost the overall performance of wireless communication systems.Although traditional JFSCE schemes alleviate the influence between FS and CE,they show deficiencies in dealing with hardware imperfection(HI)and deterministic line-of-sight(LOS)path.To tackle this challenge,we proposed a cascaded ELM-based JFSCE to alleviate the influence of HI in the scenario of the Rician fading channel.Specifically,the conventional JFSCE method is first employed to extract the initial features,and thus forms the non-Neural Network(NN)solutions for FS and CE,respectively.Then,the ELMbased networks,named FS-NET and CE-NET,are cascaded to capture the NN solutions of FS and CE.Simulation and analysis results show that,compared with the conventional JFSCE methods,the proposed cascaded ELM-based JFSCE significantly reduces the error probability of FS and the normalized mean square error(NMSE)of CE,even against the impacts of parameter variations.