Kang et al.published a research article on the treatment of ischemic stroke using engineered Treg cells(Kang et al.,Prog Biochem Biophys,2025,52(4):946-956.DOI:10.16476/j.pibb.2025.0019).Their study mainly explores th...Kang et al.published a research article on the treatment of ischemic stroke using engineered Treg cells(Kang et al.,Prog Biochem Biophys,2025,52(4):946-956.DOI:10.16476/j.pibb.2025.0019).Their study mainly explores the immunoregulatory role of regulatory T(Treg)cells in ischemic stroke,providing an innovative therapeutic strategy.Neuroinflammation is a major driver of secondary injury after stroke.Existing treatments focus on vascular recanalization while neglecting immune regulation.Their study proposes to modulate neuroinflammation through in vitro-induced Treg cells,offering a novel approach distinct from traditional thrombolysis and endovascular interventions.展开更多
Non-alcoholic fatty liver disease(NAFLD)is the most common chronic liver disease,defined by several phases,ranging from benign fat accumulation to non-alcoholic steatohepatitis(NASH),which can lead to liver cancer and...Non-alcoholic fatty liver disease(NAFLD)is the most common chronic liver disease,defined by several phases,ranging from benign fat accumulation to non-alcoholic steatohepatitis(NASH),which can lead to liver cancer and cirrhosis.Although NAFLD is a disease of disordered metabolism,it also involves several immune cell-mediated inflammatory processes,either promoting and/or suppressing hepatocyte inflammation through the secretion of pro-inflammatory and/or anti-inflammatory factors to influence the NAFLD process.However,the underlying disease mechanism and the role of immune cells in NAFLD are still under investigation,leaving many open-ended questions.In this review,we presented the recent concepts about the interplay of immune cells in the onset and pathogenesis of NAFLD.We also highlighted the specific non-immune cells exhibiting immunological properties of therapeutic significance in NAFLD.We hope that this review will help guide the development of future NAFLD therapeutics.展开更多
AIM:Regulatory T cells(Tregs)are a specialized subset of CD4^(+)T cells primarily involved in im⁃munosuppressive functions.AMP-activated protein kinase(AMPK)serves as a metabolic sensor that governs the differen⁃tiati...AIM:Regulatory T cells(Tregs)are a specialized subset of CD4^(+)T cells primarily involved in im⁃munosuppressive functions.AMP-activated protein kinase(AMPK)serves as a metabolic sensor that governs the differen⁃tiation,maturation,and immune functions of Tregs through metabolic reprogramming.However,the impact of AMPKα1(the catalytic subunit of AMPK)knockout specifically in Tregs on the host's immune microenvironment remains largely un⁃explored.METHODS:Histological changes in immune organs were assessed using HE staining.The types of immune cells and their relative population percentages in immune organs and blood were quantified through flow cytometry in both AMPKα1flox/flox(AMPKα1^(fl/fl))mice and Treg-specific AMPKα1 knockout mice(AMPKα1^(fl/fl)Foxp3^(cre)mice).RESULTS:Compared to AMPKα1^(fl/fl)mice,the percentage of eosinophils in the bone marrow of AMPKα1^(fl/fl)Foxp3^(cre)mice was significant⁃ly reduced.Additionally,while the thymus of AMPKα1^(fl/fl)Foxp3^(cre)mice exhibited normal structure,both its size and the ratio of thymus weight to body weight were significantly decreased.The knockout of AMPKα1 in Tregs led to a notable reduction in the total percentage of immature double-negative(DN)cells.Consequently,the percentage of CD4^(+)T cells derived from these DN cells also decreased,even though the percentages of DN1 and DN4 cells were higher in the thymus of AMPKα1^(fl/fl)Foxp3^(cre)mice compared to AMPKα1^(fl/fl)mice.Importantly,the proportion of Siglec-F+CD11b^(+)eosinophils in the thymus was significantly lower in AMPKα1^(fl/fl)Foxp3^(cre)mice.Knockout of AMPKα1 in Tregs resulted in a marked increase in the percentage of CD4^(+)T cells in peripheral blood,alongside a decrease in the proportion of mature CD8^(+)T cells.Similarly,the proportion of CD4^(+)T cells in the spleen of AMPKα1^(fl/fl)Foxp3^(cre)mice was elevated compared to AMPKα1^(fl/fl)mice.In contrast,the proportion of neutrophils significantly decreased,while mononuclear cell proportions increased in the spleen of AMPKα1^(fl/fl)Foxp3^(cre)mice.In lymph nodes,the medullary boundaries in AMPKα1^(fl/fl)Foxp3^(cre)mice were blurred,and the lymphoid follicles were missing,a feature not observed in AMPKα1^(fl/fl)mice.Furthermore,the knockout of AMPKα1 in Tregs reduced the CD3^(+)T cell population,particularly the CD8^(+)T cell population,in lymph nodes.Although the mature Treg cell population was significantly lower in AMPKα1^(fl/fl)Foxp3^(cre)mice,the percentage of CD4^(+)T cells was markedly in⁃creased.In contrast,there was no statistically significant difference in granulocyte populations between AMPKα1^(fl/fl)Foxp3^(cre)and AMPKα1^(fl/fl)mice.CONCLUSION:The populations of mature Tregs,CD8^(+)T cells and eosinophils in various im⁃mune organs were significantly altered in mice with Treg-specific AMPKα1 knockout,suggesting a potential remodeling of the host immune microenvironment in response to inflammatory stimuli.展开更多
Hepatocellular carcinoma(HCC),which is essentially primary liver cancer,is closely related to CD8^(+)T cell immune infiltration and immune suppression.We constructed a CD8^(+)T cells related risk score model to predic...Hepatocellular carcinoma(HCC),which is essentially primary liver cancer,is closely related to CD8^(+)T cell immune infiltration and immune suppression.We constructed a CD8^(+)T cells related risk score model to predict the prognosis of HCC patients and provided therapeutic guidance based on the risk score.Using integrated bulk RNA sequencing(RNA-seq)and single-cell RNA sequencing(scRNA-seq)datasets,we identified stable CD8^(+)T cell signatures.Based on these signatures,a 3-gene risk score model,comprised of KLRB1,RGS 2,and TNFRSF1B was constructed.The risk score model was well validated through an independent external validation cohort.We divided patients into high-risk and low-risk groups according to the risk score and compared the differences in immune microenvironment between these two groups.Compared with low-risk patients,high-risk patients have higher M2-type macrophage content(P<0.0001)and lower CD8^(+)T cells infiltration(P<0.0001).High-risk patients predict worse response to immunotherapy treatment than low-risk patients(P<0.01).Drug sensitivity analysis shows that PI3K-β inhibitor AZD6482 and TGFβRII inhibitor SB505124 may be suitable therapies for high-risk patients,while the IGF-1R inhibitor BMS-754807 or the novel pyrimidine-based anti-tumor metabolic drug Gemcitabine could be potential therapeutic choices for low-risk patients.Moreover,expression of these 3-gene model was verified by immunohistochemistry.In summary,the establishment and validation of a CD8^(+)T cell-derived risk model can more accurately predict the prognosis of HCC patients and guide the construction of personalized treatment plans.展开更多
文摘Kang et al.published a research article on the treatment of ischemic stroke using engineered Treg cells(Kang et al.,Prog Biochem Biophys,2025,52(4):946-956.DOI:10.16476/j.pibb.2025.0019).Their study mainly explores the immunoregulatory role of regulatory T(Treg)cells in ischemic stroke,providing an innovative therapeutic strategy.Neuroinflammation is a major driver of secondary injury after stroke.Existing treatments focus on vascular recanalization while neglecting immune regulation.Their study proposes to modulate neuroinflammation through in vitro-induced Treg cells,offering a novel approach distinct from traditional thrombolysis and endovascular interventions.
文摘Non-alcoholic fatty liver disease(NAFLD)is the most common chronic liver disease,defined by several phases,ranging from benign fat accumulation to non-alcoholic steatohepatitis(NASH),which can lead to liver cancer and cirrhosis.Although NAFLD is a disease of disordered metabolism,it also involves several immune cell-mediated inflammatory processes,either promoting and/or suppressing hepatocyte inflammation through the secretion of pro-inflammatory and/or anti-inflammatory factors to influence the NAFLD process.However,the underlying disease mechanism and the role of immune cells in NAFLD are still under investigation,leaving many open-ended questions.In this review,we presented the recent concepts about the interplay of immune cells in the onset and pathogenesis of NAFLD.We also highlighted the specific non-immune cells exhibiting immunological properties of therapeutic significance in NAFLD.We hope that this review will help guide the development of future NAFLD therapeutics.
基金Supported by the National Natural Science Foundation of China(No.81800423)the Guangdong Medical Science and Technology Research project(No.B2022102)。
文摘AIM:Regulatory T cells(Tregs)are a specialized subset of CD4^(+)T cells primarily involved in im⁃munosuppressive functions.AMP-activated protein kinase(AMPK)serves as a metabolic sensor that governs the differen⁃tiation,maturation,and immune functions of Tregs through metabolic reprogramming.However,the impact of AMPKα1(the catalytic subunit of AMPK)knockout specifically in Tregs on the host's immune microenvironment remains largely un⁃explored.METHODS:Histological changes in immune organs were assessed using HE staining.The types of immune cells and their relative population percentages in immune organs and blood were quantified through flow cytometry in both AMPKα1flox/flox(AMPKα1^(fl/fl))mice and Treg-specific AMPKα1 knockout mice(AMPKα1^(fl/fl)Foxp3^(cre)mice).RESULTS:Compared to AMPKα1^(fl/fl)mice,the percentage of eosinophils in the bone marrow of AMPKα1^(fl/fl)Foxp3^(cre)mice was significant⁃ly reduced.Additionally,while the thymus of AMPKα1^(fl/fl)Foxp3^(cre)mice exhibited normal structure,both its size and the ratio of thymus weight to body weight were significantly decreased.The knockout of AMPKα1 in Tregs led to a notable reduction in the total percentage of immature double-negative(DN)cells.Consequently,the percentage of CD4^(+)T cells derived from these DN cells also decreased,even though the percentages of DN1 and DN4 cells were higher in the thymus of AMPKα1^(fl/fl)Foxp3^(cre)mice compared to AMPKα1^(fl/fl)mice.Importantly,the proportion of Siglec-F+CD11b^(+)eosinophils in the thymus was significantly lower in AMPKα1^(fl/fl)Foxp3^(cre)mice.Knockout of AMPKα1 in Tregs resulted in a marked increase in the percentage of CD4^(+)T cells in peripheral blood,alongside a decrease in the proportion of mature CD8^(+)T cells.Similarly,the proportion of CD4^(+)T cells in the spleen of AMPKα1^(fl/fl)Foxp3^(cre)mice was elevated compared to AMPKα1^(fl/fl)mice.In contrast,the proportion of neutrophils significantly decreased,while mononuclear cell proportions increased in the spleen of AMPKα1^(fl/fl)Foxp3^(cre)mice.In lymph nodes,the medullary boundaries in AMPKα1^(fl/fl)Foxp3^(cre)mice were blurred,and the lymphoid follicles were missing,a feature not observed in AMPKα1^(fl/fl)mice.Furthermore,the knockout of AMPKα1 in Tregs reduced the CD3^(+)T cell population,particularly the CD8^(+)T cell population,in lymph nodes.Although the mature Treg cell population was significantly lower in AMPKα1^(fl/fl)Foxp3^(cre)mice,the percentage of CD4^(+)T cells was markedly in⁃creased.In contrast,there was no statistically significant difference in granulocyte populations between AMPKα1^(fl/fl)Foxp3^(cre)and AMPKα1^(fl/fl)mice.CONCLUSION:The populations of mature Tregs,CD8^(+)T cells and eosinophils in various im⁃mune organs were significantly altered in mice with Treg-specific AMPKα1 knockout,suggesting a potential remodeling of the host immune microenvironment in response to inflammatory stimuli.
基金国家自然科学基金项目(No.81902513)山西省应用基础研究计划项目(No.202303021211114 and 202103021224228)山西省高等教育百亿工程“科技引导”专项(No.BYJL047)资助。
文摘Hepatocellular carcinoma(HCC),which is essentially primary liver cancer,is closely related to CD8^(+)T cell immune infiltration and immune suppression.We constructed a CD8^(+)T cells related risk score model to predict the prognosis of HCC patients and provided therapeutic guidance based on the risk score.Using integrated bulk RNA sequencing(RNA-seq)and single-cell RNA sequencing(scRNA-seq)datasets,we identified stable CD8^(+)T cell signatures.Based on these signatures,a 3-gene risk score model,comprised of KLRB1,RGS 2,and TNFRSF1B was constructed.The risk score model was well validated through an independent external validation cohort.We divided patients into high-risk and low-risk groups according to the risk score and compared the differences in immune microenvironment between these two groups.Compared with low-risk patients,high-risk patients have higher M2-type macrophage content(P<0.0001)and lower CD8^(+)T cells infiltration(P<0.0001).High-risk patients predict worse response to immunotherapy treatment than low-risk patients(P<0.01).Drug sensitivity analysis shows that PI3K-β inhibitor AZD6482 and TGFβRII inhibitor SB505124 may be suitable therapies for high-risk patients,while the IGF-1R inhibitor BMS-754807 or the novel pyrimidine-based anti-tumor metabolic drug Gemcitabine could be potential therapeutic choices for low-risk patients.Moreover,expression of these 3-gene model was verified by immunohistochemistry.In summary,the establishment and validation of a CD8^(+)T cell-derived risk model can more accurately predict the prognosis of HCC patients and guide the construction of personalized treatment plans.