It is significant to combine multiple tasks into an optimal work package in decision-making of aircraft maintenance to reduce cost,so a cost rate model of combinatorial maintenance is an urgent need.However,the optima...It is significant to combine multiple tasks into an optimal work package in decision-making of aircraft maintenance to reduce cost,so a cost rate model of combinatorial maintenance is an urgent need.However,the optimal combination under various constraints not only involves numerical calculations but also is an NP-hard combinatorial problem.To solve the problem,an adaptive genetic algorithm based on cluster search,which is divided into two phases,is put forward.In the first phase,according to the density,all individuals can be homogeneously scattered over the whole solution space through crossover and mutation and better individuals are collected as candidate cluster centres.In the second phase,the search is confined to the neighbourhood of some selected possible solutions to accurately solve with cluster radius decreasing slowly,meanwhile all clusters continuously move to better regions until all the peaks in the question space is searched.This algorithm can efficiently solve the combination problem.Taking the optimization on decision-making of aircraft maintenance by the algorithm for an example,maintenance which combines multiple parts or tasks can significantly enhance economic benefit when the halt cost is rather high.展开更多
机器人学是现在及未来科技发展的重点,路径规划是机器人学中的一个重要课题.生物界一些群居动物有严格的等级制度和职责分工,受社会群居动物行为启发,提出社会群体搜索算法(social group search algorithm,SGSO).社会群体搜索算法对群...机器人学是现在及未来科技发展的重点,路径规划是机器人学中的一个重要课题.生物界一些群居动物有严格的等级制度和职责分工,受社会群居动物行为启发,提出社会群体搜索算法(social group search algorithm,SGSO).社会群体搜索算法对群体的分类及信息反馈机制——领导-追随机制的制定,降低了早熟的概率,交叉变异和淘汰机制的引入增加了搜索范围,减少了陷入局部最优的可能.同时,对提出的社会群体搜索算法进行了分析,从理论上证明了算法的收敛性;将社会群体搜索算法应用于机器人路径规划进行仿真,从实验中验证了算法的有效性,并与遗传算法和粒子群算法比较,进一步证明了社会群体搜索算法在机器人路径规划问题中的有效性和高效性.展开更多
针对标准群搜索优化算法在解决一些复杂优化问题时容易陷入局部最优且收敛速度较慢的问题,提出一种应用反向学习和差分进化的群搜索优化算法(Group Search Optimization with Opposition-based Learning and Differential Evolution,OBD...针对标准群搜索优化算法在解决一些复杂优化问题时容易陷入局部最优且收敛速度较慢的问题,提出一种应用反向学习和差分进化的群搜索优化算法(Group Search Optimization with Opposition-based Learning and Differential Evolution,OBDGSO)。该算法利用一般动态反向学习机制产生反向种群,扩大算法的全局勘探范围;对种群中较优解个体实施差分进化的变异操作,实现在较优解附近的局部开采,以改善算法的求解精度和收敛速度。这两种策略在GSO算法中相互协同,以更好地平衡算法的全局搜索能力和局部开采能力。将OBDGSO算法和另外4种群智能算法在12个基准测试函数上进行实验,结果表明OBDGSO算法在求解精度和收敛速度上具有较显著的性能优势。展开更多
基金supported by the National Natural Science Foundation of China(6107901361079014+4 种基金61403198)the National Natural Science Funds and Civil Aviaiton Mutual Funds(U1533128U1233114)the Programs of Natural Science Foundation of China and China Civil Aviation Joint Fund(60939003)the Natural Science Foundation of Jiangsu Province in China(BK2011737)
文摘It is significant to combine multiple tasks into an optimal work package in decision-making of aircraft maintenance to reduce cost,so a cost rate model of combinatorial maintenance is an urgent need.However,the optimal combination under various constraints not only involves numerical calculations but also is an NP-hard combinatorial problem.To solve the problem,an adaptive genetic algorithm based on cluster search,which is divided into two phases,is put forward.In the first phase,according to the density,all individuals can be homogeneously scattered over the whole solution space through crossover and mutation and better individuals are collected as candidate cluster centres.In the second phase,the search is confined to the neighbourhood of some selected possible solutions to accurately solve with cluster radius decreasing slowly,meanwhile all clusters continuously move to better regions until all the peaks in the question space is searched.This algorithm can efficiently solve the combination problem.Taking the optimization on decision-making of aircraft maintenance by the algorithm for an example,maintenance which combines multiple parts or tasks can significantly enhance economic benefit when the halt cost is rather high.
文摘机器人学是现在及未来科技发展的重点,路径规划是机器人学中的一个重要课题.生物界一些群居动物有严格的等级制度和职责分工,受社会群居动物行为启发,提出社会群体搜索算法(social group search algorithm,SGSO).社会群体搜索算法对群体的分类及信息反馈机制——领导-追随机制的制定,降低了早熟的概率,交叉变异和淘汰机制的引入增加了搜索范围,减少了陷入局部最优的可能.同时,对提出的社会群体搜索算法进行了分析,从理论上证明了算法的收敛性;将社会群体搜索算法应用于机器人路径规划进行仿真,从实验中验证了算法的有效性,并与遗传算法和粒子群算法比较,进一步证明了社会群体搜索算法在机器人路径规划问题中的有效性和高效性.
文摘针对标准群搜索优化算法在解决一些复杂优化问题时容易陷入局部最优且收敛速度较慢的问题,提出一种应用反向学习和差分进化的群搜索优化算法(Group Search Optimization with Opposition-based Learning and Differential Evolution,OBDGSO)。该算法利用一般动态反向学习机制产生反向种群,扩大算法的全局勘探范围;对种群中较优解个体实施差分进化的变异操作,实现在较优解附近的局部开采,以改善算法的求解精度和收敛速度。这两种策略在GSO算法中相互协同,以更好地平衡算法的全局搜索能力和局部开采能力。将OBDGSO算法和另外4种群智能算法在12个基准测试函数上进行实验,结果表明OBDGSO算法在求解精度和收敛速度上具有较显著的性能优势。