期刊文献+
共找到644篇文章
< 1 2 33 >
每页显示 20 50 100
基于CNN-GraphSAGE双分支特征融合的齿轮箱故障诊断方法
1
作者 韩延 吴迪 +1 位作者 黄庆卿 张焱 《电子测量与仪器学报》 北大核心 2025年第3期115-124,共10页
针对卷积神经网络(CNN)在振动数据结构信息上挖掘不足导致故障诊断精度不高的问题,提出一种基于卷积神经网络与图采样和聚合网络(CNN-GraphSAGE)双分支特征融合的齿轮箱故障诊断方法。首先,对齿轮箱振动数据进行小波包分解,利用分解后... 针对卷积神经网络(CNN)在振动数据结构信息上挖掘不足导致故障诊断精度不高的问题,提出一种基于卷积神经网络与图采样和聚合网络(CNN-GraphSAGE)双分支特征融合的齿轮箱故障诊断方法。首先,对齿轮箱振动数据进行小波包分解,利用分解后的小波包特征系数构建包含节点和边的图结构数据;然后,建立CNN-GraphSAGE双分支特征提取网络,在CNN分支中采用空洞卷积网络提取数据的全局特征,在GraphSAGE网络分支中通过多层特征融合策略来挖掘数据结构中隐含的关联信息;最后,基于SKNet注意力机制融合提取的双分支特征,并输入全连接层中实现对齿轮箱的故障诊断。为验证研究方法在齿轮箱故障诊断上的优良性能,首先对所提方法进行消融实验,然后在无添加噪声和添加1 dB噪声的条件下进行对比实验。实验结果表明,即使在1 dB噪声的条件下,研究方法的平均诊断精度为92.07%,均高于其他对比模型,证明了研究方法能够有效地识别齿轮箱的各类故障。 展开更多
关键词 图卷积神经网络 卷积神经网络 故障诊断 注意力机制
在线阅读 下载PDF
GraphMLP-Mixer:基于图-多层感知机架构的高效多行为序列推荐方法 被引量:2
2
作者 卢晓凯 封军 +2 位作者 韩永强 王皓 陈恩红 《计算机研究与发展》 EI CSCD 北大核心 2024年第8期1917-1929,共13页
在多行为序列推荐领域,图神经网络(GNNs)虽被广泛应用,但存在局限性,如对序列间协同信号建模不足和处理长距离依赖性等问题.针对这些问题,提出了一种新的解决框架GraphMLP-Mixer.该框架首先构造全局物品图来增强模型对序列间协同信号的... 在多行为序列推荐领域,图神经网络(GNNs)虽被广泛应用,但存在局限性,如对序列间协同信号建模不足和处理长距离依赖性等问题.针对这些问题,提出了一种新的解决框架GraphMLP-Mixer.该框架首先构造全局物品图来增强模型对序列间协同信号的建模,然后将感知机-混合器架构与图神经网络结合,得到图-感知机混合器模型对用户兴趣进行充分挖掘.GraphMLP-Mixer具有2个显著优势:一是能够有效捕捉用户行为的全局依赖性,同时减轻信息过压缩问题;二是其时间与空间效率显著提高,其复杂度与用户交互行为的数量成线性关系,优于现有基于GNN多行为序列推荐模型.在3个真实的公开数据集上进行实验,大量的实验结果验证了GraphMLP-Mixer在处理多行为序列推荐问题时的有效性和高效性. 展开更多
关键词 多行为建模 序列推荐 图神经网络 MLP架构 全局物品图
在线阅读 下载PDF
基于通道自注意图卷积网络的运动想象脑电分类实验 被引量:1
3
作者 孟明 张帅斌 +2 位作者 高云园 佘青山 范影乐 《实验技术与管理》 北大核心 2025年第2期73-80,共8页
该文将运动想象脑电分类任务设计成应用型教学实验。针对传统图卷积网络(graph convolutional neural networks,GCN)无法建模脑电通道间动态关系问题,提出一种融合通道注意机制的多层图卷积网络模型(channel self-attention multilayer ... 该文将运动想象脑电分类任务设计成应用型教学实验。针对传统图卷积网络(graph convolutional neural networks,GCN)无法建模脑电通道间动态关系问题,提出一种融合通道注意机制的多层图卷积网络模型(channel self-attention multilayer GCN,CAMGCN)。首先,CAMGCN计算脑电信号各个通道间的皮尔逊相关系数进行图建模,并通过通道位置编码模块学习通道间关系。然后将得到的时域和频域特征分量通过通道自注意图嵌入模块进行图嵌入,得到图数据。最后通过多级GCN模块提取并融合多层次拓扑信息,得出分类结果。CAMGCN深化了模型在自适应学习通道间动态关系的能力,并在结构方面提高了自注意机制与图数据的适配性。该模型在BCI Competition-Ⅳ2a数据集上的准确率达到83.8%,能够有效实现对运动想象任务的分类。该实验有助于增进学生对于深度学习和脑机接口的理解,培养创新思维,提高科研素质。 展开更多
关键词 脑机接口 脑电图 图卷积网络 注意力机制
在线阅读 下载PDF
基于Bert+GCN多模态数据融合的药物分子属性预测 被引量:1
4
作者 闫效莺 靳艳春 +1 位作者 冯月华 张绍武 《生物化学与生物物理进展》 北大核心 2025年第3期783-794,共12页
目的药物研发成本高、周期长且成功率低。准确预测分子属性对有效筛选药物候选物、优化分子结构具有重要意义。基于特征工程的传统分子属性预测方法需研究人员具备深厚的学科背景和广泛的专业知识。随着人工智能技术的不断成熟,涌现出... 目的药物研发成本高、周期长且成功率低。准确预测分子属性对有效筛选药物候选物、优化分子结构具有重要意义。基于特征工程的传统分子属性预测方法需研究人员具备深厚的学科背景和广泛的专业知识。随着人工智能技术的不断成熟,涌现出大量优于传统特征工程方法的分子属性预测算法。然而这些算法模型仍然存在标记数据稀缺、泛化性能差等问题。鉴于此,本文提出一种基于Bert+GCN的多模态数据融合的分子属性预测算法(命名为BGMF),旨在整合药物分子的多模态数据,并充分利用大量无标记药物分子训练模型学习药物分子的有用信息。方法本文提出了BGMF算法,该算法根据药物SMILES表达式分别提取了原子序列、分子指纹序列和分子图数据,采用预训练模型Bert和图卷积神经网络GCN结合的方式进行特征学习,在挖掘药物分子中“单词”全局特征的同时,融合了分子图的局部拓扑特征,从而更充分利用分子全局-局部上下文语义关系,之后,通过对原子序列和分子指纹序列的双解码器设计加强分子特征表达。结果5个数据集共43个分子属性预测任务上,BGMF方法的AUC值均优于现有其他方法。此外,本文还构建独立测试数据集验证了模型具有良好的泛化性能。对生成的分子指纹表征(molecular fingerprint representation)进行t-SNE可视化分析,证明了BGMF模型可成功捕获不同分子指纹的内在结构与特征。结论通过图卷积神经网络与Bert模型相结合,BGMF将分子图数据整合到分子指纹恢复和掩蔽原子恢复的任务中,可以有效地捕捉分子指纹的内在结构和特征,进而高效预测药物分子属性。 展开更多
关键词 Bert预训练 注意力机制 分子指纹 分子属性预测 图卷积神经网络
在线阅读 下载PDF
多域时空层次图神经网络的空气质量预测 被引量:3
5
作者 马汉达 吴亚东 《计算机应用》 北大核心 2025年第2期444-452,共9页
在协同融合气象、空间和时间三大信息的时空混合模型中,时间变化建模通常在一维空间中完成。针对一维序列局限于滑动窗口和缺乏对多尺度特征的灵活提取的问题,提出一种多域时空层次图神经网络(MST-HGNN)模型。首先,构建城市全局尺度和... 在协同融合气象、空间和时间三大信息的时空混合模型中,时间变化建模通常在一维空间中完成。针对一维序列局限于滑动窗口和缺乏对多尺度特征的灵活提取的问题,提出一种多域时空层次图神经网络(MST-HGNN)模型。首先,构建城市全局尺度和站点局部尺度的两级层次图,从而进行空间关系学习;其次,将一维空气质量序列转换为一组基于多个周期的二维张量,并在二维空间上通过多尺度卷积进行周期解耦以捕获频域特征;同时,在一维空间中利用长短期记忆(LSTM)网络拟合时域特征;最后,为避免聚合冗余信息,设计一种门控机制融合模块用于频域和时域特征的多域特征融合。在Urban-Air数据集和长三角城市群数据集上的实验结果表明,相较于多视图多任务时空图卷积网络模型(M2),所提模型在预测第1 h、3 h、6 h、12 h空气质量的平均绝对误差(MAE)和均方根误差(RMSE)均低于对比模型。可见,MST-HGNN能在频域上解耦复杂时间模式,利用频域信息弥补时域特征建模的局限性,并结合时域信息更全面地预测空气质量变化。 展开更多
关键词 空气质量预测 多域特征融合 时空特征 周期解耦 门控机制融合 图神经网络
在线阅读 下载PDF
面向领域知识图谱的实体关系抽取模型仿真 被引量:1
6
作者 何山 肖晰 张嘉玲 《吉林大学学报(理学版)》 北大核心 2025年第2期465-471,共7页
针对目前领域知识图谱实体关系抽取效果不佳的问题,提出一种面向领域知识图谱的实体关系抽取模型研究方法.先建立由编解码模块、实体识别模块和实体关系抽取模块组成的实体关系抽取模型,在实体关系抽取模型中,通过双向长短期记忆神经网... 针对目前领域知识图谱实体关系抽取效果不佳的问题,提出一种面向领域知识图谱的实体关系抽取模型研究方法.先建立由编解码模块、实体识别模块和实体关系抽取模块组成的实体关系抽取模型,在实体关系抽取模型中,通过双向长短期记忆神经网络对文本句子进行编码处理,将编码后文本句子特征表示向量输入至基于深度神经网络的实体识别模块中进行文本句子的实体识别,并将识别结果输入至基于卷积神经网络的实体关系抽取模块中进行实体关系抽取,然后将实体关系抽取获取的实体关系三元组输入至编解码模块中进行解码操作,实现最终的面向领域知识图谱的实体关系抽取.实验结果表明,该方法的实体关系抽取效果和整体应用效果较好. 展开更多
关键词 知识图谱 实体关系抽取 实体识别 卷积神经网络
在线阅读 下载PDF
基于双图神经网络的会话推荐算法
7
作者 李忠伟 吴金燠 +2 位作者 刘昕 周洁 李可一 《计算机工程与设计》 北大核心 2025年第1期23-29,共7页
针对现有会话推荐算法缺乏对属性信息利用的问题,提出一种基于双图神经网络的会话推荐算法(SR-DGNN)。分别构建会话图和全局相似图学习项目的时序特征和内容特征表示,设计相似度图卷积网络(S-GCN)对全局相似图进行建模。设计基于注意力... 针对现有会话推荐算法缺乏对属性信息利用的问题,提出一种基于双图神经网络的会话推荐算法(SR-DGNN)。分别构建会话图和全局相似图学习项目的时序特征和内容特征表示,设计相似度图卷积网络(S-GCN)对全局相似图进行建模。设计基于注意力机制的融合策略对项目的特征表示进行聚合,获取会话的全局表示。综合考虑用户的长期和短期兴趣,预测用户偏好。在KKBOX和MIND两个数据集上进行了大量实验,实验结果表明,所提模型优于现有基准模型。 展开更多
关键词 推荐系统 会话推荐 图神经网络 会话图 全局相似图 相似度图卷积网络 注意力机制
在线阅读 下载PDF
聚合全局交互与局部交互的知识图谱补全
8
作者 冯勇 栾超杰 +2 位作者 王嵘冰 徐红艳 张永刚 《计算机科学与探索》 北大核心 2025年第7期1909-1917,共9页
知识图谱的不完整性严重影响了下游任务的应用与发展,因此,有必要对其进行改进以补充缺失值,即知识图谱补全。现有的知识图谱补全模型大多重组实体关系嵌入表示以捕获局部交互。但这种方法破坏了三元组的原有结构,只能利用单一的局部交... 知识图谱的不完整性严重影响了下游任务的应用与发展,因此,有必要对其进行改进以补充缺失值,即知识图谱补全。现有的知识图谱补全模型大多重组实体关系嵌入表示以捕获局部交互。但这种方法破坏了三元组的原有结构,只能利用单一的局部交互而忽略了实体关系间全局交互的影响。为此,提出一种聚合全局交互与局部交互的知识图谱补全方法AGILI。该方法首先引入自注意力机制获取头实体和关系间的信息关联程度,生成融入全局交互信息的嵌入表示,再采用卷积神经网络从新嵌入表示中提取局部交互信息,设计基于关系权重的可学习交互聚合器,在将全局交互与局部交互进行特征融合时,可以根据关系类别自适应地调整两种交互的重要程度,提高方法在多关系知识图谱上的表达能力。在公开数据集FB15k-237、WN18RR和Kinship上通过链接预测任务进行实验验证,实验结果表明,与最新的基于卷积神经网络的模型ConvD相比,所提出的方法在FB15k-237数据集上Hits@1、Hits@3指标分别提高了6.9%、5.3%,证明了所提出方法的优越性。 展开更多
关键词 知识图谱 知识图谱补全 链接预测 自注意力机制 卷积神经网络
在线阅读 下载PDF
基于多重相似性和增强注意力预测药物-靶标相互作用
9
作者 王伟 余梦雪 +5 位作者 孙斌 万仕彤 刘栋 周运 张红军 王鲜芳 《河南师范大学学报(自然科学版)》 北大核心 2025年第2期99-107,共9页
在新药发现和药物重定位研究中,发现药物与靶标之间的相互作用是重要的研究内容.针对药物与靶标相互作用网络,提出一种基于多重相似性和增强注意力机制的图卷积神经网络模型(RSGCN)预测药物-靶标相互作用.首先,提出了多重相似性来捕捉... 在新药发现和药物重定位研究中,发现药物与靶标之间的相互作用是重要的研究内容.针对药物与靶标相互作用网络,提出一种基于多重相似性和增强注意力机制的图卷积神经网络模型(RSGCN)预测药物-靶标相互作用.首先,提出了多重相似性来捕捉网络结构特征,以充分利用节点间的直接或间接关系.然后,通过PCA降维减少相似性噪声对实验结果的影响.最后,采用图卷积神经网络(graph convolution neural network,GCN)获得节点嵌入表示,并融入基于注意力的增强层,通过增强注意力机制获得节点间的注意力权重,能够高效地预测药物与靶标之间的相互作用.在黄金标准数据集上的实验结果表明RSGCN模型具有较好的性能. 展开更多
关键词 图卷积神经网络(GCN) 多重相似性 PCA 增强注意力机制 药物-靶标相互作用
在线阅读 下载PDF
面向点云理解的双邻域图卷积方法
10
作者 李宗民 徐畅 +2 位作者 白云 鲜世洋 戎光彩 《浙江大学学报(工学版)》 北大核心 2025年第5期879-889,共11页
针对现有方法对局部点云结构建模时空间跨度有限以及传统特征聚合方法造成一定信息损失的问题,提出双邻域图卷积网络(DNGCN).在原始点云中增加角度先验,以增强对点云局部几何结构的理解,捕捉局部细节.对原始邻域进行扩展,在局域内设计... 针对现有方法对局部点云结构建模时空间跨度有限以及传统特征聚合方法造成一定信息损失的问题,提出双邻域图卷积网络(DNGCN).在原始点云中增加角度先验,以增强对点云局部几何结构的理解,捕捉局部细节.对原始邻域进行扩展,在局域内设计双邻域图卷积,通过集成高斯自适应聚合,在提取较大感受野范围内显著特征的同时,充分保留原始邻域信息.通过局部-全局信息交互来增大局部点的空间跨度,捕获远距离依赖关系.本文方法在分类数据集ModelNet40和ScanObjectNN上分别取得了94.1%、89.6%的总体精度,与其他先进算法相比有显著提升,较DGCNN分别提升了1.2%、11.5%.在部件分割数据集ShapeNetPart和语义分割数据集ScanNetv2、S3DIS上均获得优秀的性能,平均交并比分别为86.7%、74.9%和69.8%.通过大量的实验,证明了该模型的有效性. 展开更多
关键词 点云特征 图卷积网络 几何增强 局部全局交互 注意力机制
在线阅读 下载PDF
融合变分图自编码器与局部-全局图网络的认知负荷脑电识别模型
11
作者 周天彤 郑妍琪 +2 位作者 魏韬 戴亚康 邹凌 《计算机应用》 北大核心 2025年第6期1849-1857,共9页
针对认知负荷识别模型存在过于依赖手动特征提取、忽视脑电图(EEG)信号的空间信息和无法有效学习图结构数据的问题,提出一种融合变分图自编码器(VGAE)与局部-全局图网络(VLGGNet)的认知负荷EEG识别模型。该模型由时间学习模块和图形学... 针对认知负荷识别模型存在过于依赖手动特征提取、忽视脑电图(EEG)信号的空间信息和无法有效学习图结构数据的问题,提出一种融合变分图自编码器(VGAE)与局部-全局图网络(VLGGNet)的认知负荷EEG识别模型。该模型由时间学习模块和图形学习模块这2个部分组成。首先,使用时间学习模块通过多尺度时间卷积捕捉EEG信号的动态频率表示,并通过空间与通道重建卷积(SCConv)和1×1卷积核级联模块融合多尺度卷积提取的特征;其次,使用图形学习模块将EEG数据定义为局部-全局图,其中,局部图特征提取层将节点属性聚合到一个低维向量,全局图特征提取层通过VGAE重构图结构;最后,对全局图和节点特征向量执行轻量化图卷积操作,由全连接层输出预测结果。通过嵌套交叉验证,实验结果表明,在心算任务(MAT)数据集上,相较于次优的局部-全局图网络(LGGNet),VLGGNet的平均准确率(mAcc)和平均F1分数(mF1)分别提升了4.07和3.86个百分点;在同时任务EEG工作量(STEW)数据集上,相较于表现最好的多尺度时空卷积神经网络(TSception),VLGGNet的mAcc与TSception相同,mF1仅降低了0.01个百分点。可见VLGGNet提高了认知负荷分类的性能,也验证了前额叶和额叶区域与认知负荷状态密切相关。 展开更多
关键词 认知负荷 脑电信号 多尺度时间卷积 变分图自编码器 局部-全局图网络
在线阅读 下载PDF
基于多维注意力机制的高速公路交通流量预测方法
12
作者 虞安军 励英迪 +5 位作者 杨哲懿 付崇宇 童蔚苹 余佳 刘云海 刘志远 《汽车安全与节能学报》 北大核心 2025年第3期463-469,共7页
为了实现精准的交通流量预测,提高高速公路智慧管理水平,该文构建了一种基于多维注意力机制的交通流量预测模型,并在樟吉高速公路真实交通数据集上开展对比实验,以验证模型的准确性及预测精度。模型基于图神经网络(GNN)和时间卷积网络(T... 为了实现精准的交通流量预测,提高高速公路智慧管理水平,该文构建了一种基于多维注意力机制的交通流量预测模型,并在樟吉高速公路真实交通数据集上开展对比实验,以验证模型的准确性及预测精度。模型基于图神经网络(GNN)和时间卷积网络(TCN)提取交通流空间和时间维度的特征,结合多维注意力机制挖掘时空数据中的关键信息,同时引入多任务学习架构,通过基于同方差不确定性的损失函数来平衡不同任务共同学习,以提高模型的泛化能力和鲁棒性。结果表明:该模型在测试集上的均方根误差(RMSE)和平均绝对误差(MAE)分别为7.467和5.133,相较基准模型有更好的预测精度;提出的该交通流量预测方法可有效地挖掘交通流的时空特性,描述真实交通运行状态,对高速公路交通流量做出精准预测。 展开更多
关键词 交通流预测 图神经网络(GNN) 时间卷积网络(TCN) 多维注意力机制
在线阅读 下载PDF
基于HDNNF-CAF的短时交通流预测研究
13
作者 王庆荣 慕壮壮 +1 位作者 朱昌锋 何润田 《计算机工程与应用》 北大核心 2025年第15期318-328,共11页
短时交通流预测在智能交通系统中扮演重要的角色。针对交通流复杂多变的时空特征、非平稳性及外部因素引发的数据异常,提出考虑异常因素的混合深度神经网络预测模型(hybrid deep neural network forecasting model considering anomalou... 短时交通流预测在智能交通系统中扮演重要的角色。针对交通流复杂多变的时空特征、非平稳性及外部因素引发的数据异常,提出考虑异常因素的混合深度神经网络预测模型(hybrid deep neural network forecasting model considering anomalous factors,HDNNF-CAF)。该模型将邻接矩阵、交通流量矩阵及交通流其他参数矩阵结合异常数据处理理论,进行数据预处理和异常数据识别。建立异常数据时空特征提取理论,捕获异常数据时空信息;利用变分模态分解(VMD)降低交通流数据非平稳性,并提出图卷积网络(GCN)优化Informer理论分别对各个子序列进行特征提取,以组合生成交通流时空信息。最终结合异常数据与交通流数据的时空信息生成预测结果。在真实数据集PeMS04上进行验证,实验结果表明,HDNNF-CAF能够有效识别交通流异常数据,提高预测精度,优于一些现有方法。 展开更多
关键词 短时交通流 预测 深度学习 图卷积网络 时空信息
在线阅读 下载PDF
基于CNN和Transformer双流融合的人体姿态估计
14
作者 李鑫 张丹 +2 位作者 郭新 汪松 陈恩庆 《计算机工程与应用》 北大核心 2025年第5期187-199,共13页
卷积神经网络(CNN)和Transformer模型在人体姿态估计中有着广泛应用,然而Transformer更注重捕获图像的全局特征,忽视了局部特征对于人体姿态细节的重要性,而CNN则缺乏Transformer的全局建模能力。为了充分利用CNN处理局部信息和Transfor... 卷积神经网络(CNN)和Transformer模型在人体姿态估计中有着广泛应用,然而Transformer更注重捕获图像的全局特征,忽视了局部特征对于人体姿态细节的重要性,而CNN则缺乏Transformer的全局建模能力。为了充分利用CNN处理局部信息和Transformer处理全局信息的优势,构建一种CNN-Transformer双流的并行网络架构来聚合丰富的特征信息。由于传统Transformer的输入需要将图片展平为多个patch,不利于提取对位置敏感的人体结构信息,因此将其多头注意力结构进行改进,使模型输入能够保持原始2D特征图的结构;同时提出特征耦合模块融合两个分支不同分辨率下的特征,最大限度地保留局部特征与全局特征;最后引入改进后的坐标注意力模块(coordinate attention),进一步提升网络的特征提取能力。在COCO和MPII数据集上的实验结果表明所提模型相对目前主流模型具有更高的检测精度,从而说明所提模型能够充分捕获并融合人体姿态中的局部和全局特征。 展开更多
关键词 卷积神经网络 TRANSFORMER 局部特征 全局特征 2D特征图 特征耦合
在线阅读 下载PDF
基于关系图卷积神经网络的跨句实体关系抽取
15
作者 陈千 关春祥 +1 位作者 郭鑫 王素格 《中文信息学报》 北大核心 2025年第7期62-71,共10页
相对于句子级关系抽取,涉及关系的实体存在于多个句子中的情况在实际场景中更常见。因此篇章级关系抽取逐渐成为近年来信息抽取领域的研究热点。为了充分利用上下文信息和篇章结构信息,该文采用实体嵌入表示和实体间的显式结构关系研究... 相对于句子级关系抽取,涉及关系的实体存在于多个句子中的情况在实际场景中更常见。因此篇章级关系抽取逐渐成为近年来信息抽取领域的研究热点。为了充分利用上下文信息和篇章结构信息,该文采用实体嵌入表示和实体间的显式结构关系研究跨句实体关系抽取。首先,对篇章进行编码和构图;进而,使用关系图卷积神经网络对图节点进行更新,并利用融合篇章全局信息的节点嵌入表示更新边嵌入表示;最后,该模型使用一种迭代算法完成边信息的推理,实现跨句实体关系抽取。实验结果表明,相比基线模型,在CDR和GDA数据集上的跨句实体关系抽取性能得到了显著提高。 展开更多
关键词 关系图卷积神经网络 跨句实体关系抽取 实体嵌入
在线阅读 下载PDF
基于蜉蝣优化算法的时空融合交通流预测研究
16
作者 张红 巩蕾 +1 位作者 曹洁 张玺君 《哈尔滨工程大学学报》 北大核心 2025年第4期764-771,796,共9页
针对复杂交通流的动态时空特性难以精准建模、现有深度学习模型超参数难以确定而导致模型预测精度低的问题,本文提出基于蜉蝣优化算法的门控时空卷积网络交通流预测方法。利用时间卷积网络结合门控线性单元挖掘交通数据隐藏的时间依赖性... 针对复杂交通流的动态时空特性难以精准建模、现有深度学习模型超参数难以确定而导致模型预测精度低的问题,本文提出基于蜉蝣优化算法的门控时空卷积网络交通流预测方法。利用时间卷积网络结合门控线性单元挖掘交通数据隐藏的时间依赖性,通过门控机制融合ChebNet捕获的静态空间特征与图卷积网络结合注意力机制捕获的动态空间特征,构建考虑动态时空特征的预测模型,并借助蜉蝣优化算法优化超参数。研究表明:在PeMSD7(M)数据集上,15、30和45 min下该模型MAE的预测精度较T-GCN提高了5.91%、9.06%和10.72%,本文方法具有有效性与优越性。 展开更多
关键词 交通流预测 动态时空特性 超参数 蜉蝣优化算法 时间卷积网络 门控线性单元 注意力机制 图卷积网络
在线阅读 下载PDF
共享超分的双分支遥感图像时空融合网络
17
作者 方帅 张小溪 张晶 《电子学报》 北大核心 2025年第2期581-594,共14页
本文从空间维度和时间维度分析了场景弱变化区域和类型变化区域的融合规律、物理模型的差异性和效果上的互补性,提出了共享超分辨率的双分支(Shared Super-Resolution Dual-Branch,SSRDB)遥感图像时空融合算法.该算法具有如下3个特点:(1... 本文从空间维度和时间维度分析了场景弱变化区域和类型变化区域的融合规律、物理模型的差异性和效果上的互补性,提出了共享超分辨率的双分支(Shared Super-Resolution Dual-Branch,SSRDB)遥感图像时空融合算法.该算法具有如下3个特点:(1)构建了互补性的网络框架,虽然该框架是端到端的深度学习模型,但每个模块有各自的物理意义和任务,通过增加中间监督,分别实现空间维的超分建模,时间维的变化预测建模,以及两者优势互补的融合建模;(2)对变化预测的数学表示进行推演,利用一个非线性补偿模块,使得两分支共享超分模块,在共享超分模块和递归复用超分单元的双重策略下,显著降低了网络参数;(3)递归超分模块使用固定的2倍率超分单元,在有效监督和有效参考下,渐进式进行特征增强与图像重建,这可以有效提高超分精度,且通过调整超分单元个数,灵活适应不同倍率差异的时空融合任务.SSRDB算法在空间和光谱特性上以及变化区域上都展现了优秀的融合效果,RMSE(Root Mean Squared Error)、SAM(Spectral Angle Mapper)和SSIM(Structural Similarity)3个定量评价指标显示,在CIA(Coleambally lrrigation Area)数据集上分别优于次优方法 7.067%、2.065%、0.563%;在LGC(Lower Gwydir Catchment)数据集上分别优于次优方法5.319%、5.490%、1.455%;在Nanjing数据集上分别优于次优方法6.486%、16.290%、0.481%. 展开更多
关键词 遥感图像 时空融合 双分支 图像超分 卷积神经网络
在线阅读 下载PDF
融合时空特征的多模态车辆轨迹预测方法
18
作者 史昕 王浩泽 +1 位作者 纪艺 马峻岩 《计算机工程与应用》 北大核心 2025年第7期325-333,共9页
针对考虑车辆行驶不确定性的轨迹分布准确快速预测问题,提出了一种融合时空特征的多模态车辆轨迹预测方法(GCNTA)。利用空间关联度系数和图卷积神经网络(GCN)实现空间关联特征提取。构建具有时间注意力机制的时域卷积网络(TCN)完成时间... 针对考虑车辆行驶不确定性的轨迹分布准确快速预测问题,提出了一种融合时空特征的多模态车辆轨迹预测方法(GCNTA)。利用空间关联度系数和图卷积神经网络(GCN)实现空间关联特征提取。构建具有时间注意力机制的时域卷积网络(TCN)完成时间特征提取。通过特征融合门控单元实现每个时间步长对应时空特征的自适应融合,并利用门控循环单元(GRU)网络构建解码器进一步生成未来车辆轨迹的概率分布。利用公开的NGSIM数据集对所提出模型进行消融实验及预测精度分析。仿真结果表明,GCNTA模型在预测误差均方根(RMSE)平均值相比GCN、图注意力网络(GAT)和长短期记忆网络(LSTM)模型分别减少15.6%、16.3%和23.8%。 展开更多
关键词 车辆轨迹预测 深度学习 图神经网络 时域卷积网络 注意力机制
在线阅读 下载PDF
梯度区分与特征范数驱动的开放世界目标检测
19
作者 张英俊 闫薇薇 +2 位作者 谢斌红 张睿 陆望东 《计算机应用》 北大核心 2025年第7期2203-2210,共8页
开放世界目标检测(OWOD)将目标检测任务拓展至真实多变的环境中,要求模型能准确识别已知和未知对象,并逐步学习新知识。针对现有OWOD网络模型中未知类的召回率偏低和误识别的问题,提出一种梯度区分与特征范数驱动的开放世界目标检测(GDF... 开放世界目标检测(OWOD)将目标检测任务拓展至真实多变的环境中,要求模型能准确识别已知和未知对象,并逐步学习新知识。针对现有OWOD网络模型中未知类的召回率偏低和误识别的问题,提出一种梯度区分与特征范数驱动的开放世界目标检测(GDFN-OWOD)网络模型。针对未知类召回率偏低的问题,提出梯度区分性表征模块(GDRM),即利用反向传播的梯度差异区分未知类别和背景,以提高未知类召回率;此外,引入基于图分割的框聚类(GSBC)算法将物体边界框的确定建模为图分解问题,从而减少冗余的边界框,进而降低模型的计算量;针对未知类误识别的问题,采用基于特征范数的分类器(FN-BC)选择性能最优的卷积层识别已知和未知类别,以达到更高的识别准确率。在M-OWODB数据集上的实验结果表明,与最优对比模型相比在T1、T2、T3任务中GDFN-OWOD的未知类召回率分别提升了1.1、2.1、0.9个百分点,而绝对开集误差(A-OSE)分别降低了35.1%、28.7%和12.2%。可见,与现有的OWOD网络模型相比,所提网络模型有效缓解了未知类的召回率偏低和误识别的问题。 展开更多
关键词 开放世界目标检测 反向传播梯度 图分割算法 特征范数 卷积神经网络
在线阅读 下载PDF
融合基序信息的图同构注意力网络的图分类问题研究
20
作者 衡红军 曹莹莹 《小型微型计算机系统》 北大核心 2025年第3期552-558,共7页
基于频繁子图挖掘算法的图分类方法无法避免子图同构计算,算法的效率低且忽略了节点特征信息,而基于图神经网络的方法则关注节点特征信息.本文提出一种融合基序信息的图同构注意力网络的图分类方法.该方法首先利用图的拓扑结构和节点类... 基于频繁子图挖掘算法的图分类方法无法避免子图同构计算,算法的效率低且忽略了节点特征信息,而基于图神经网络的方法则关注节点特征信息.本文提出一种融合基序信息的图同构注意力网络的图分类方法.该方法首先利用图的拓扑结构和节点类别信息,提取数据集中的子图结构构成基序集合,再基于基序集合生成基序级图嵌入表示,避免了频繁子图挖掘;然后在图同构网络的池化操作中引入全局注意力机制,学习高质量的节点级图嵌入表示;最后将基序级和节点级图嵌入表示拼接起来用于图分类.该图嵌入表示不仅包含了图中节点的特征信息,也反映了图的结构特征信息.实验结果表明,所构建的网络模型在五个公开数据集上取得了优异的分类精度. 展开更多
关键词 图分类 图神经网络 基序 全局注意力机制
在线阅读 下载PDF
上一页 1 2 33 下一页 到第
使用帮助 返回顶部