面向微波毫米波低噪声放大电路对高性能低噪声放大器件的需求,进行0.15μm栅长GaAs PHEMT低噪声器件制备工艺的开发,在制备工艺中采用了欧姆特性优异的复合帽层欧姆接触、低寄生电容的介质空洞栅结构以及高击穿电压的双槽结构。在此基...面向微波毫米波低噪声放大电路对高性能低噪声放大器件的需求,进行0.15μm栅长GaAs PHEMT低噪声器件制备工艺的开发,在制备工艺中采用了欧姆特性优异的复合帽层欧姆接触、低寄生电容的介质空洞栅结构以及高击穿电压的双槽结构。在此基础上实现了一款性能优异的Ku波段低噪声放大电路,电路在Ku频段全频带(14~18 GHz)内实现了优良的性能,其噪声系数小于1.3 d B,增益大于17 d B。电路采用5 V电源供电,功耗为250 m W,芯片面积为2 mm×1.6 mm;这款性能优异的Ku频段低噪声放大器特别适用于高信噪比要求的卫星通信等应用。展开更多
基于GaAs赝高电子迁移率晶体管(PHEMT)工艺,研制了一种5-12 GHz的收发一体多功能芯片(T/R MFC),其具有噪声低、增益高和中等功率等特点。电路由低噪声放大器和多个单刀双掷(SPDT)开关构成。为了获得较低的噪声系数和较大的增益,...基于GaAs赝高电子迁移率晶体管(PHEMT)工艺,研制了一种5-12 GHz的收发一体多功能芯片(T/R MFC),其具有噪声低、增益高和中等功率等特点。电路由低噪声放大器和多个单刀双掷(SPDT)开关构成。为了获得较低的噪声系数和较大的增益,低噪声放大器采用自偏置三级级联拓扑结构;为了获得较高的隔离度和较低的插入损耗,SPDT开关采用串并联结构。测试结果表明,在5-12 GHz频段内,收发一体多功能芯片的小信号增益大于26 d B,噪声系数小于4 d B,输入/输出电压驻波比小于2.0,1 d B压缩点输出功率大于15 d Bm。其中,放大器为单电源5 V供电,静态电流小于120 m A;开关控制电压为-5 V/0 V。芯片尺寸为2.65 mm×2.0 mm。展开更多
文摘面向微波毫米波低噪声放大电路对高性能低噪声放大器件的需求,进行0.15μm栅长GaAs PHEMT低噪声器件制备工艺的开发,在制备工艺中采用了欧姆特性优异的复合帽层欧姆接触、低寄生电容的介质空洞栅结构以及高击穿电压的双槽结构。在此基础上实现了一款性能优异的Ku波段低噪声放大电路,电路在Ku频段全频带(14~18 GHz)内实现了优良的性能,其噪声系数小于1.3 d B,增益大于17 d B。电路采用5 V电源供电,功耗为250 m W,芯片面积为2 mm×1.6 mm;这款性能优异的Ku频段低噪声放大器特别适用于高信噪比要求的卫星通信等应用。
文摘基于GaAs赝高电子迁移率晶体管(PHEMT)工艺,研制了一种5-12 GHz的收发一体多功能芯片(T/R MFC),其具有噪声低、增益高和中等功率等特点。电路由低噪声放大器和多个单刀双掷(SPDT)开关构成。为了获得较低的噪声系数和较大的增益,低噪声放大器采用自偏置三级级联拓扑结构;为了获得较高的隔离度和较低的插入损耗,SPDT开关采用串并联结构。测试结果表明,在5-12 GHz频段内,收发一体多功能芯片的小信号增益大于26 d B,噪声系数小于4 d B,输入/输出电压驻波比小于2.0,1 d B压缩点输出功率大于15 d Bm。其中,放大器为单电源5 V供电,静态电流小于120 m A;开关控制电压为-5 V/0 V。芯片尺寸为2.65 mm×2.0 mm。