In order to investigate the process of incremental sheet forming (ISF) through both experimental and numerical approaches, a three-dimensional elasto-plastic finite element model (FEM) was developed to simulate the pr...In order to investigate the process of incremental sheet forming (ISF) through both experimental and numerical approaches, a three-dimensional elasto-plastic finite element model (FEM) was developed to simulate the process and the simulated results were compared with those of experiment. The results of numerical simulations, such as the strain history and distribution, the stress state and distribution, sheet thickness distribution, etc, were discussed in details, and the influences of process parameters on these results were also analyzed. The simulated results of the radial strain and the thickness distribution are in good agreement with experimental results. The simulations reveal that the deformation is localized around the tool and constantly remains close to a plane strain state. With decreasing depth step, increasing tool diameter and wall inclination angle, the axial stress reduces, leading to less thinning and more homogeneous plastic strain and thickness distribution. During ISF, the plastic strain increases stepwise under the action of the tool. Each increase in plastic strain is accompanied by hydrostatic pressure, which explains why obtainable deformation using ISF exceeds the forming limits of conventional sheet forming.展开更多
Given the increasing use of glass mat-reinforced thermoplastic(GMT)composites,the formability of GMT sheets is currently a topic of research.A new sheet forming process for solidified GMT was developed.In this process...Given the increasing use of glass mat-reinforced thermoplastic(GMT)composites,the formability of GMT sheets is currently a topic of research.A new sheet forming process for solidified GMT was developed.In this process,a GMT sheet was sandwiched by dummy metallic sheets during deep drawing.The dummy metallic sheets acted as protective materials and media for heating the GMT sheet.In this study,tensile tests of GMT specimens were carried out under different temperature conditions.The effect of temperature on the tensile deformation was analyzed.The effect of temperature on the deep drawing process of GMT sheets with dummy sheets was further investigated.Finite element method(FEM)was conducted to simulate the deep drawing process.In the drawing force rising stage,the law of drawing force with the depth of the drawing was analyzed using FEM and experiments.展开更多
In order to reflect the stochastic characteristics of structures more comprehensively and accurately, a theory and method for modeling of structures with stochastic parameters is presented by using probability finite ...In order to reflect the stochastic characteristics of structures more comprehensively and accurately, a theory and method for modeling of structures with stochastic parameters is presented by using probability finite element method and stochastic experiment data of structures based on the modeling of structures with deterministic parameters. Double-decker space frame is taken as an example to validate this theory and method, good results are gained.展开更多
A stress relaxation test has been carried out for Hastelloy C-276 at temperature of 800 ~C and initial stress level of 250 MPa. Based on the experimental stress relaxation curve, the relationship between creep strain ...A stress relaxation test has been carried out for Hastelloy C-276 at temperature of 800 ~C and initial stress level of 250 MPa. Based on the experimental stress relaxation curve, the relationship between creep strain rate and stress has been derived. Then, a set of creep constitutive equations has been built and the values of constants arising in the constitutive equations have been determined by fitting the creep strain rate-stress curve. Close agreement between computed results and experimental ones is obtained for stress relaxation data. The creep constitutive equation set has been integrated with the commercial FE (finite element) solver MSC.Marc via the user defined subroutine, CRPLAW, for the vacuum hot bulge forming process modelling of Hastelloy C-276 thin-walled cylindrical workpiece. The temperature field, the radius-direction displacement field and the stress-strain field are calculated and analyzed. Furthermore, the bulging dimension and the final internal diameter of workpiece are predicted and the test results verify the reliability of the finite element method.展开更多
To gain a deep insight into the hot drawing process of aluminum alloy sheet, simulations of cylindrical cup drawing at elevated temperatures were carried out with experimental validation. The influence of four importa...To gain a deep insight into the hot drawing process of aluminum alloy sheet, simulations of cylindrical cup drawing at elevated temperatures were carried out with experimental validation. The influence of four important process parameters, namely,punch velocity, blank holder force(BHF), friction coefficient and initial forming temperature of blank on drawing characteristics(i.e.minimum thickness and thickness deviation) was investigated with the help of design of experiments(DOE), analysis of variance(ANOVA) and analysis of mean(ANOM). Based on the results of ANOVA, it is shown that the blank holder force has the greatest influence on minimum thickness. The importance of punch velocity for thickness deviation is 44.35% followed by BHF of 24.88%,friction coefficient of 15.77% and initial forming temperature of blank of 14.995%. After determining the significance of each factor on forming characteristics, how the individual parameter affects characteristics was further analyzed by ANOM.展开更多
The failure of AA3003 aluminum alloy sheet metal was predicted for non-isothermal viscous pressure bulging (VPB). Utilizing the coupled thermo-mechanical finite element method combined with ductile fracture criterion,...The failure of AA3003 aluminum alloy sheet metal was predicted for non-isothermal viscous pressure bulging (VPB). Utilizing the coupled thermo-mechanical finite element method combined with ductile fracture criterion, the calculations were carried out for non-isotherm VPB at various temperatures and the influences of the initial temperature of viscous medium on failure mode of bulge specimens were investigated. The results show that the failure modes are different for the non-isothermal VPB with different initial temperatures of viscous medium. For the non-isothermal VPB of AA3003 aluminum alloy sheet with initial temperature of 250 ℃, when the initial temperature of viscous medium ranges from 150 to 180 ℃, the formability of sheet metal can be improved to a full extent. The validity of the predictions is examined by comparing with experimental results.展开更多
The experimental die apparatus of the solid granules medium forming on sheet metal was designed and manufactured.Typical parts,such as conical,parabolic,cylindrical and square-box-shaped components,were successfully t...The experimental die apparatus of the solid granules medium forming on sheet metal was designed and manufactured.Typical parts,such as conical,parabolic,cylindrical and square-box-shaped components,were successfully trial-produced as well.According to the analysis of the changing trends of the cross-section shape and the wall thickness during the process,it can be found that the shape of the free deformation zone of the sheet metal,which is the most critical thinning area,can be described as an approximately spherical cap.According to this forming feature,back pressure deep drawing technology with solid granules medium on sheet metal was proposed to restrain drastic thinning at the bottom of the part through the joint friction effect of solid granules medium,the back pressure tringle and the sheet metal.Therefore,the deep drawing limit of the sheet metal is significantly improved.In order to fabricate thin-walled rotary parts with great drawing ratio and complex cross-sections,a finite element model based on the material property test of the solid granules medium was established to optimize the scheme of the back pressure deep drawing.The effects on the forming performance of sheet metal from back pressure load and the approach of blank holding control were analyzed through this model.展开更多
In the current work, to predict and improve the formability of deep drawing process for steel plate cold rolled commercial grade (SPCC) sheets, three parameters including the blanking force, the die and punch comer ...In the current work, to predict and improve the formability of deep drawing process for steel plate cold rolled commercial grade (SPCC) sheets, three parameters including the blanking force, the die and punch comer radius were considered. The experimental plan according to Taguchi's orthogonal array was coupled with the finite element method (FEM) simulations. Firstly, the data from the test of stress-strain and forming limit curves were used as input into ABAQUS/Explicit finite element code to predict the failure occurrence of deep drawing process. The three parameters were then validated to establish their effects on the press formability. The optimum case found via simulation was finally confirmed through an experiment. In order to obtain the complex curve profile of cup shape after deep drawing, the anisotropic behavior of earring phenomenon was modeled and implemented into FEM. After such phenomenon was correctly predicted, an error metric compared with design curve was then measured.展开更多
Cross-wedge rolling (CWR) is a metal process of ro ta ry forming. To produce a part, one cylindrical billet should be placed between t wo counterrotating and wedge-shape dies, which move tangentially relative each oth...Cross-wedge rolling (CWR) is a metal process of ro ta ry forming. To produce a part, one cylindrical billet should be placed between t wo counterrotating and wedge-shape dies, which move tangentially relative each other. The billet suffers plastic deformation (essentially, localized compressio n) during its rotation between the rotating dies. Compared to other numerical si mulation methods, the finite element method (FEM) has advantages in solving gene ral problems with complex shapes of the formed parts. In cross-wedge rolling, t here are four stages in the workpiece deformation process, namely knifing, guidi ng, stretching and sizing stage. It is time-consuming and expensive to design t he CWR process by trial and error method. The application of numerical simul ation for the CWR process will help engineers to efficiently improve the process development. Tselikov, Hayama, Jain and Kobayashi, and Higashimo applied the sl ip-line theory in study of CWR process analysis. Zb.pater studied CWR process i ncluding upsetting by upper-bound method. The above numerical simulation were b ased on the two-dimensional plain-strain assumption ignored the metal flow in workpiece axial direction. Therefore, the complex three-dimensional stress and deformation involved in CWR processes were not presented. Compared to other nume rical simulation methods, the finite element method (FEM) has advantages in solv ing general problems with complex shapes of the formed parts. As yet, a few 3-D finite element simulation studies on CWR process have been reported in literatu res. In this paper, the process of cross wedge rolling (CWR) has been simulated and analyzed by 3D rigid-plastic finite element method. Considering the charact eristic of CWR, the static implicit FEM program is selected. The models proposed in this study uses the commercial code DEFORM 3D to simulate the CWR process. T his is an implicit Lagrangian finite element code, which includes many new enhan cements functions. A new method of utilizing multiple processors using the MPI s tandard has been implemented. Automatic switching between the two different defo rmation solvers (Sparse Solver and Conjugate Gradient Solver) has also been impl emented in order to increase the speed of simulations. In this paper, all stages in CWR process are simulated to be able to closely understand and analyze the a ctual CWR process. For simulating all forming stages in CWR process, the dynam ic adaptive remeshing technology for tetrahedral solid elements was applied. T he stress distributions in cross section of forming workpiece are analyzed to in terpret fracture or rarefaction in the center of workpiece. Authors also analyze d the time-torque curve and the laws of load changing.展开更多
基金Project(50175034) supported by the National Natural Science Foundation of China
文摘In order to investigate the process of incremental sheet forming (ISF) through both experimental and numerical approaches, a three-dimensional elasto-plastic finite element model (FEM) was developed to simulate the process and the simulated results were compared with those of experiment. The results of numerical simulations, such as the strain history and distribution, the stress state and distribution, sheet thickness distribution, etc, were discussed in details, and the influences of process parameters on these results were also analyzed. The simulated results of the radial strain and the thickness distribution are in good agreement with experimental results. The simulations reveal that the deformation is localized around the tool and constantly remains close to a plane strain state. With decreasing depth step, increasing tool diameter and wall inclination angle, the axial stress reduces, leading to less thinning and more homogeneous plastic strain and thickness distribution. During ISF, the plastic strain increases stepwise under the action of the tool. Each increase in plastic strain is accompanied by hydrostatic pressure, which explains why obtainable deformation using ISF exceeds the forming limits of conventional sheet forming.
基金Project(CG2016003001)supported by the Ministry of Human Resources and Social Security of China
文摘Given the increasing use of glass mat-reinforced thermoplastic(GMT)composites,the formability of GMT sheets is currently a topic of research.A new sheet forming process for solidified GMT was developed.In this process,a GMT sheet was sandwiched by dummy metallic sheets during deep drawing.The dummy metallic sheets acted as protective materials and media for heating the GMT sheet.In this study,tensile tests of GMT specimens were carried out under different temperature conditions.The effect of temperature on the tensile deformation was analyzed.The effect of temperature on the deep drawing process of GMT sheets with dummy sheets was further investigated.Finite element method(FEM)was conducted to simulate the deep drawing process.In the drawing force rising stage,the law of drawing force with the depth of the drawing was analyzed using FEM and experiments.
基金the National Natural Science Foundation of China (5963140) Doctor Point Fund of National Education Committee Parent Company Fund of Aviation Industry
文摘In order to reflect the stochastic characteristics of structures more comprehensively and accurately, a theory and method for modeling of structures with stochastic parameters is presented by using probability finite element method and stochastic experiment data of structures based on the modeling of structures with deterministic parameters. Double-decker space frame is taken as an example to validate this theory and method, good results are gained.
基金Project(2009CB724307)supported by the Major State Basic Research Development Program(973 Program)of China
文摘A stress relaxation test has been carried out for Hastelloy C-276 at temperature of 800 ~C and initial stress level of 250 MPa. Based on the experimental stress relaxation curve, the relationship between creep strain rate and stress has been derived. Then, a set of creep constitutive equations has been built and the values of constants arising in the constitutive equations have been determined by fitting the creep strain rate-stress curve. Close agreement between computed results and experimental ones is obtained for stress relaxation data. The creep constitutive equation set has been integrated with the commercial FE (finite element) solver MSC.Marc via the user defined subroutine, CRPLAW, for the vacuum hot bulge forming process modelling of Hastelloy C-276 thin-walled cylindrical workpiece. The temperature field, the radius-direction displacement field and the stress-strain field are calculated and analyzed. Furthermore, the bulging dimension and the final internal diameter of workpiece are predicted and the test results verify the reliability of the finite element method.
基金Project(2009ZX04014-074)supported by the National High Technology Research and Development Program of ChinaProject(20120006110017)supported by Doctoral Fund Program of Ministry of Education of ChinaProject(P2014-15)supported by State Key Laboratory of Materials Processing and Die & Mould Technology(Huazhong University of Science and Technology),China
文摘To gain a deep insight into the hot drawing process of aluminum alloy sheet, simulations of cylindrical cup drawing at elevated temperatures were carried out with experimental validation. The influence of four important process parameters, namely,punch velocity, blank holder force(BHF), friction coefficient and initial forming temperature of blank on drawing characteristics(i.e.minimum thickness and thickness deviation) was investigated with the help of design of experiments(DOE), analysis of variance(ANOVA) and analysis of mean(ANOM). Based on the results of ANOVA, it is shown that the blank holder force has the greatest influence on minimum thickness. The importance of punch velocity for thickness deviation is 44.35% followed by BHF of 24.88%,friction coefficient of 15.77% and initial forming temperature of blank of 14.995%. After determining the significance of each factor on forming characteristics, how the individual parameter affects characteristics was further analyzed by ANOM.
基金Projects(50805034, 50275035) supported by the National Natural Science Foundation of China
文摘The failure of AA3003 aluminum alloy sheet metal was predicted for non-isothermal viscous pressure bulging (VPB). Utilizing the coupled thermo-mechanical finite element method combined with ductile fracture criterion, the calculations were carried out for non-isotherm VPB at various temperatures and the influences of the initial temperature of viscous medium on failure mode of bulge specimens were investigated. The results show that the failure modes are different for the non-isothermal VPB with different initial temperatures of viscous medium. For the non-isothermal VPB of AA3003 aluminum alloy sheet with initial temperature of 250 ℃, when the initial temperature of viscous medium ranges from 150 to 180 ℃, the formability of sheet metal can be improved to a full extent. The validity of the predictions is examined by comparing with experimental results.
基金Project(50775197) supported by the National Natural Science Foundation of China
文摘The experimental die apparatus of the solid granules medium forming on sheet metal was designed and manufactured.Typical parts,such as conical,parabolic,cylindrical and square-box-shaped components,were successfully trial-produced as well.According to the analysis of the changing trends of the cross-section shape and the wall thickness during the process,it can be found that the shape of the free deformation zone of the sheet metal,which is the most critical thinning area,can be described as an approximately spherical cap.According to this forming feature,back pressure deep drawing technology with solid granules medium on sheet metal was proposed to restrain drastic thinning at the bottom of the part through the joint friction effect of solid granules medium,the back pressure tringle and the sheet metal.Therefore,the deep drawing limit of the sheet metal is significantly improved.In order to fabricate thin-walled rotary parts with great drawing ratio and complex cross-sections,a finite element model based on the material property test of the solid granules medium was established to optimize the scheme of the back pressure deep drawing.The effects on the forming performance of sheet metal from back pressure load and the approach of blank holding control were analyzed through this model.
基金Project(107.02-2013.01)supported by the Vietnam’s National Foundation for Science and Technology Development
文摘In the current work, to predict and improve the formability of deep drawing process for steel plate cold rolled commercial grade (SPCC) sheets, three parameters including the blanking force, the die and punch comer radius were considered. The experimental plan according to Taguchi's orthogonal array was coupled with the finite element method (FEM) simulations. Firstly, the data from the test of stress-strain and forming limit curves were used as input into ABAQUS/Explicit finite element code to predict the failure occurrence of deep drawing process. The three parameters were then validated to establish their effects on the press formability. The optimum case found via simulation was finally confirmed through an experiment. In order to obtain the complex curve profile of cup shape after deep drawing, the anisotropic behavior of earring phenomenon was modeled and implemented into FEM. After such phenomenon was correctly predicted, an error metric compared with design curve was then measured.
文摘Cross-wedge rolling (CWR) is a metal process of ro ta ry forming. To produce a part, one cylindrical billet should be placed between t wo counterrotating and wedge-shape dies, which move tangentially relative each other. The billet suffers plastic deformation (essentially, localized compressio n) during its rotation between the rotating dies. Compared to other numerical si mulation methods, the finite element method (FEM) has advantages in solving gene ral problems with complex shapes of the formed parts. In cross-wedge rolling, t here are four stages in the workpiece deformation process, namely knifing, guidi ng, stretching and sizing stage. It is time-consuming and expensive to design t he CWR process by trial and error method. The application of numerical simul ation for the CWR process will help engineers to efficiently improve the process development. Tselikov, Hayama, Jain and Kobayashi, and Higashimo applied the sl ip-line theory in study of CWR process analysis. Zb.pater studied CWR process i ncluding upsetting by upper-bound method. The above numerical simulation were b ased on the two-dimensional plain-strain assumption ignored the metal flow in workpiece axial direction. Therefore, the complex three-dimensional stress and deformation involved in CWR processes were not presented. Compared to other nume rical simulation methods, the finite element method (FEM) has advantages in solv ing general problems with complex shapes of the formed parts. As yet, a few 3-D finite element simulation studies on CWR process have been reported in literatu res. In this paper, the process of cross wedge rolling (CWR) has been simulated and analyzed by 3D rigid-plastic finite element method. Considering the charact eristic of CWR, the static implicit FEM program is selected. The models proposed in this study uses the commercial code DEFORM 3D to simulate the CWR process. T his is an implicit Lagrangian finite element code, which includes many new enhan cements functions. A new method of utilizing multiple processors using the MPI s tandard has been implemented. Automatic switching between the two different defo rmation solvers (Sparse Solver and Conjugate Gradient Solver) has also been impl emented in order to increase the speed of simulations. In this paper, all stages in CWR process are simulated to be able to closely understand and analyze the a ctual CWR process. For simulating all forming stages in CWR process, the dynam ic adaptive remeshing technology for tetrahedral solid elements was applied. T he stress distributions in cross section of forming workpiece are analyzed to in terpret fracture or rarefaction in the center of workpiece. Authors also analyze d the time-torque curve and the laws of load changing.