Fisher线性判别分析(Fisher Linear Discriminant Analysis,FLDA)是一种典型的监督型特征提取方法,旨在最大化Fisher准则,寻求最优投影矩阵。在标准Fisher准则中,涉及到的度量为L_2范数度量,此度量通常缺乏鲁棒性,对异常值点较敏感。为...Fisher线性判别分析(Fisher Linear Discriminant Analysis,FLDA)是一种典型的监督型特征提取方法,旨在最大化Fisher准则,寻求最优投影矩阵。在标准Fisher准则中,涉及到的度量为L_2范数度量,此度量通常缺乏鲁棒性,对异常值点较敏感。为提高鲁棒性,引入了一种基于L_1范数度量的FLDA及其优化求解算法。实验结果表明:在很多情形下,相比于传统的L_2范数FLDA,L_1范数FLDA具有更好的分类精度和鲁棒性。展开更多
Fisher线性判别式FLDs(Fisher linear discriminates)的常用阈值对不平衡数据集分类效果较差。以不平衡数据集为应用背景,主要研究各种阈值对FLDs分类性能的影响。认为影响FLDs性能的主要是类间分布区域不平衡而不是样本数不平衡,因此...Fisher线性判别式FLDs(Fisher linear discriminates)的常用阈值对不平衡数据集分类效果较差。以不平衡数据集为应用背景,主要研究各种阈值对FLDs分类性能的影响。认为影响FLDs性能的主要是类间分布区域不平衡而不是样本数不平衡,因此提出多个经验阈值,并依据分类精度从中选择优化阈值。大量实验结果表明,所提出的阈值优化选择方法能有效提高FLDs对不平衡数据集的分类性能。展开更多
文摘Fisher线性判别分析(Fisher Linear Discriminant Analysis,FLDA)是一种典型的监督型特征提取方法,旨在最大化Fisher准则,寻求最优投影矩阵。在标准Fisher准则中,涉及到的度量为L_2范数度量,此度量通常缺乏鲁棒性,对异常值点较敏感。为提高鲁棒性,引入了一种基于L_1范数度量的FLDA及其优化求解算法。实验结果表明:在很多情形下,相比于传统的L_2范数FLDA,L_1范数FLDA具有更好的分类精度和鲁棒性。
文摘Fisher线性判别式FLDs(Fisher linear discriminates)的常用阈值对不平衡数据集分类效果较差。以不平衡数据集为应用背景,主要研究各种阈值对FLDs分类性能的影响。认为影响FLDs性能的主要是类间分布区域不平衡而不是样本数不平衡,因此提出多个经验阈值,并依据分类精度从中选择优化阈值。大量实验结果表明,所提出的阈值优化选择方法能有效提高FLDs对不平衡数据集的分类性能。