高位滑坡对建筑集群的冲击破坏时常导致严重的人员伤亡,基于光滑粒子流体动力学-离散元法-有限元法(smoothed particle hydrodynamics-discrete element method-finite element method,SPH-DEM-FEM)耦合的数值模型,开展了高位滑坡对框...高位滑坡对建筑集群的冲击破坏时常导致严重的人员伤亡,基于光滑粒子流体动力学-离散元法-有限元法(smoothed particle hydrodynamics-discrete element method-finite element method,SPH-DEM-FEM)耦合的数值模型,开展了高位滑坡对框架结构建筑群的冲击过程、建筑结构破坏机理、冲击力时程与框架柱关键点应力和弯矩等动力机制研究。研究结果表明:SPH-DEM-FEM耦合数值方法能够有效地模拟碎石土滑坡中土(SPH)石(DEM)混合物的抛射弹跳、爬高绕流冲击运动过程。考虑了常规建筑垂直、平行于滑坡流向的三排建筑组合布局,位于滑坡近端的纵向排列建筑表现为连续性倾倒破坏,横向排列的建筑则呈现整体倾倒破坏;因前排建筑群对滑坡冲击能量的耗散及滑坡自身摩擦耗能,位于滑坡后端建筑表现为引流面墙体和前排柱发生局部破坏,结构保持稳定,损毁程度依次为上游无建筑缓冲耗能的建筑>有横向排列的建筑>有纵向排列的建筑;纵向、横向排列的建筑冲击力衰减幅度分别31%、21%。横向框架建筑整体倾倒的损毁机制表现为框架柱的直接剪断或节点塑形铰链失效;纵向框架建筑连续性倾倒的损毁机制表现为前排框架柱的失效引起后排框架柱轴向压力和极限弯矩增加,持续冲击荷载超过其极限弯矩致使后排框架柱发生弯曲破坏,最终结构倾倒。系统能量在动能、内能和摩擦耗能间转化,其中摩擦耗能占65.5%,结构耗能占23.6%,动能快速下降与内能急剧增加是建筑破坏的关键特征。展开更多
Determination of ballistic performance of an armor solution is a complicated task and evolved significantly with the application of finite element methods(FEM) in this research field.The traditional armor design studi...Determination of ballistic performance of an armor solution is a complicated task and evolved significantly with the application of finite element methods(FEM) in this research field.The traditional armor design studies performed with FEM requires sophisticated procedures and intensive computational effort,therefore simpler and accurate numerical approaches are always worthwhile to decrease armor development time.This study aims to apply a hybrid method using FEM simulation and artificial neural network(ANN) analysis to approximate ballistic limit thickness for armor steels.To achieve this objective,a predictive model based on the artificial neural networks is developed to determine ballistic resistance of high hardness armor steels against 7.62 mm armor piercing ammunition.In this methodology,the FEM simulations are used to create training cases for Multilayer Perceptron(MLP) three layer networks.In order to validate FE simulation methodology,ballistic shot tests on 20 mm thickness target were performed according to standard Stanag 4569.Afterwards,the successfully trained ANN(s) is used to predict the ballistic limit thickness of 500 HB high hardness steel armor.Results show that even with limited number of data,FEM-ANN approach can be used to predict ballistic penetration depth with adequate accuracy.展开更多
针对二维介质目标的电磁成像问题,将正余弦算法(Sine Cosine Algorithm,SCA)与有限元方法(Finite Element Method,FEM)和不变性测试方程(Measured Equation of Invariance,MEI)进行结合提出一种新的成像方法。将FEM与MEI进行结合求解二...针对二维介质目标的电磁成像问题,将正余弦算法(Sine Cosine Algorithm,SCA)与有限元方法(Finite Element Method,FEM)和不变性测试方程(Measured Equation of Invariance,MEI)进行结合提出一种新的成像方法。将FEM与MEI进行结合求解二维介质目标的电磁散射正问题,即求解Helmholtz方程。其中,MEI保证边界截断的精度,FEM适用于复杂介质目标的准确模拟。对于电磁散射逆问题,引入SCA并加以改进提出一种新的重构方法。该方法采用等效原理与格林函数的渐近式求得远区散射场,以测量的散射场和计算的散射场最大偏差为目标函数,采用改进的SCA优化介质参数,使目标函数达到最小值,以此重构散射体。为提高计算效率,采用MPI算法进行并行计算。文中采用基准函数展示了改进的SCA算法的快速收敛性,并采用非规则的均匀介质柱目标验证了成像方法的正确性。展开更多
针对以往有限元模型中弹丸数量较少且为规则阵列排布的缺陷,采用光滑粒子流体动力学法(Smoothed particle hydrodynamics,SPH)与有限元法(Finite element method,FEM)相结合的方法,对喷丸过程进行数值模拟;使用MATLAB对弹丸空间位置坐...针对以往有限元模型中弹丸数量较少且为规则阵列排布的缺陷,采用光滑粒子流体动力学法(Smoothed particle hydrodynamics,SPH)与有限元法(Finite element method,FEM)相结合的方法,对喷丸过程进行数值模拟;使用MATLAB对弹丸空间位置坐标进行随机化处理,形成了大量丸粒冲击工件表面的随机喷丸仿真模型。通过分析确定了喷丸饱和时间,研究了喷射角度、弹丸流量对残余应力场的影响。结果表明:在喷丸参数一定的条件下,存在相应的饱和喷丸时间;研究喷丸参数对残余应力的影响时,应在喷丸达到饱和时间之后提取残余应力值;喷射角度增大,残余压应力增大;开始时弹丸流量增大,残余压应力会有所增大,但当其达到饱和值后,残余压应力不再变化。展开更多
文摘高位滑坡对建筑集群的冲击破坏时常导致严重的人员伤亡,基于光滑粒子流体动力学-离散元法-有限元法(smoothed particle hydrodynamics-discrete element method-finite element method,SPH-DEM-FEM)耦合的数值模型,开展了高位滑坡对框架结构建筑群的冲击过程、建筑结构破坏机理、冲击力时程与框架柱关键点应力和弯矩等动力机制研究。研究结果表明:SPH-DEM-FEM耦合数值方法能够有效地模拟碎石土滑坡中土(SPH)石(DEM)混合物的抛射弹跳、爬高绕流冲击运动过程。考虑了常规建筑垂直、平行于滑坡流向的三排建筑组合布局,位于滑坡近端的纵向排列建筑表现为连续性倾倒破坏,横向排列的建筑则呈现整体倾倒破坏;因前排建筑群对滑坡冲击能量的耗散及滑坡自身摩擦耗能,位于滑坡后端建筑表现为引流面墙体和前排柱发生局部破坏,结构保持稳定,损毁程度依次为上游无建筑缓冲耗能的建筑>有横向排列的建筑>有纵向排列的建筑;纵向、横向排列的建筑冲击力衰减幅度分别31%、21%。横向框架建筑整体倾倒的损毁机制表现为框架柱的直接剪断或节点塑形铰链失效;纵向框架建筑连续性倾倒的损毁机制表现为前排框架柱的失效引起后排框架柱轴向压力和极限弯矩增加,持续冲击荷载超过其极限弯矩致使后排框架柱发生弯曲破坏,最终结构倾倒。系统能量在动能、内能和摩擦耗能间转化,其中摩擦耗能占65.5%,结构耗能占23.6%,动能快速下降与内能急剧增加是建筑破坏的关键特征。
基金Otokar Otomotiv ve Savunma Sanayi A.S. for the financial support
文摘Determination of ballistic performance of an armor solution is a complicated task and evolved significantly with the application of finite element methods(FEM) in this research field.The traditional armor design studies performed with FEM requires sophisticated procedures and intensive computational effort,therefore simpler and accurate numerical approaches are always worthwhile to decrease armor development time.This study aims to apply a hybrid method using FEM simulation and artificial neural network(ANN) analysis to approximate ballistic limit thickness for armor steels.To achieve this objective,a predictive model based on the artificial neural networks is developed to determine ballistic resistance of high hardness armor steels against 7.62 mm armor piercing ammunition.In this methodology,the FEM simulations are used to create training cases for Multilayer Perceptron(MLP) three layer networks.In order to validate FE simulation methodology,ballistic shot tests on 20 mm thickness target were performed according to standard Stanag 4569.Afterwards,the successfully trained ANN(s) is used to predict the ballistic limit thickness of 500 HB high hardness steel armor.Results show that even with limited number of data,FEM-ANN approach can be used to predict ballistic penetration depth with adequate accuracy.
文摘针对二维介质目标的电磁成像问题,将正余弦算法(Sine Cosine Algorithm,SCA)与有限元方法(Finite Element Method,FEM)和不变性测试方程(Measured Equation of Invariance,MEI)进行结合提出一种新的成像方法。将FEM与MEI进行结合求解二维介质目标的电磁散射正问题,即求解Helmholtz方程。其中,MEI保证边界截断的精度,FEM适用于复杂介质目标的准确模拟。对于电磁散射逆问题,引入SCA并加以改进提出一种新的重构方法。该方法采用等效原理与格林函数的渐近式求得远区散射场,以测量的散射场和计算的散射场最大偏差为目标函数,采用改进的SCA优化介质参数,使目标函数达到最小值,以此重构散射体。为提高计算效率,采用MPI算法进行并行计算。文中采用基准函数展示了改进的SCA算法的快速收敛性,并采用非规则的均匀介质柱目标验证了成像方法的正确性。
文摘针对以往有限元模型中弹丸数量较少且为规则阵列排布的缺陷,采用光滑粒子流体动力学法(Smoothed particle hydrodynamics,SPH)与有限元法(Finite element method,FEM)相结合的方法,对喷丸过程进行数值模拟;使用MATLAB对弹丸空间位置坐标进行随机化处理,形成了大量丸粒冲击工件表面的随机喷丸仿真模型。通过分析确定了喷丸饱和时间,研究了喷射角度、弹丸流量对残余应力场的影响。结果表明:在喷丸参数一定的条件下,存在相应的饱和喷丸时间;研究喷丸参数对残余应力的影响时,应在喷丸达到饱和时间之后提取残余应力值;喷射角度增大,残余压应力增大;开始时弹丸流量增大,残余压应力会有所增大,但当其达到饱和值后,残余压应力不再变化。