Based on the commercial CFD software CFX-4.3, two-phase flow of electrolyte in 156 kA drained aluminum reduction cells with a new structure was numerically simulated by multi-fluid model and k-ε turbulence model. The...Based on the commercial CFD software CFX-4.3, two-phase flow of electrolyte in 156 kA drained aluminum reduction cells with a new structure was numerically simulated by multi-fluid model and k-ε turbulence model. The results show that the electrolyte flow in the drained cells is more even than in the conventional cells. Corresponding to center point feeding, the electrolyte flow in the drained cells is more advantageous to the release of anode gas, the dissolution and diffusion of alumina, and the gradient reduction of the electrolyte density and temperature. The average velocity of the electrolyte is 8.3 cm/s, and the maximum velocity is 59.5 cm/s. The average and maximum velocities of the gas are 23.2 cm/s and 61.1 cm/s, respectively. The cathode drained slope and anode cathode distance have certain effects on the electrolyte flow.展开更多
Based on the commercial computational fluid dynamics software CFX-4.3, electrolyte flow fields in a 156 kA pre-baked anode aluminum electrolysis cell were investigated in three different cases where the electrolyte me...Based on the commercial computational fluid dynamics software CFX-4.3, electrolyte flow fields in a 156 kA pre-baked anode aluminum electrolysis cell were investigated in three different cases where the electrolyte melt was driven by different kinds of force, i.e. electromagnetic force only, the anode gas drag force only and both of the former two forces. The results show that when electromagnetic force was introduced only, most of the electrolyte moves horizontally; when anode gas drag force was introduced only, the electrolyte flows mainly around each anode with small circulation; when electromagnetic force and anode gas drag force were both introduced together, the structure of the electrolyte flow fields and the velocity of electrolyte are similar to that of the case where only anode gas drag force is used. The electrolyte flow fields are mainly determined by the anode gas drag force.展开更多
Lithium-sulfur(Li-S)batteries have attracted enormous interest due to their super-high theoretical energy density(2600 W·h/kg)in recent years.However,issues such as lithium dendrites and the shuttle effect severe...Lithium-sulfur(Li-S)batteries have attracted enormous interest due to their super-high theoretical energy density(2600 W·h/kg)in recent years.However,issues such as lithium dendrites and the shuttle effect severely hampered the large-scale application of Li-S batteries.Herein,a novel bifunctional gel polymer electrolyte,poly(N,Ndiallyl-N,N-dimethylammonium bis(trifluoromethylsulfonylimide))-P(VDF-HFP)(PDDA-TFSI-P(VDF-HFP),PTP),was prepared by anion exchange reaction to tackle the above problems.Benefited from the interaction between TFSI-and quaternary ammonium ion in PTP,a higher lithium-ion transference number was obtained,which could availably protect Li metal anodes.Meanwhile,due to the adsorption interactions between PDDA-TFSI and polysulfides(LiPSs),the shuttle effect of Li-S batteries could be alleviated effectively.Consequently,the Li symmetric batteries assembled with PTP cycled more than 1000 h and lithium metal anodes were protected effectively.Li-S batteries assembled with this polymer electrolyte show a discharge specific capacity of 813 mA·h/g after 200 cycles and 467 mA·h/g at 3 C,exhibiting excellent cycling stability and C-rates performance.展开更多
One of the majorissuesli mitingtheintroduction of polymer electrolyte membranefuel cells(PEMFCs) is thelowtemperature ofoperation which makes platinum-based anode catalysts susceptible to poisoning by the trace amount...One of the majorissuesli mitingtheintroduction of polymer electrolyte membranefuel cells(PEMFCs) is thelowtemperature ofoperation which makes platinum-based anode catalysts susceptible to poisoning by the trace amount of CO,inevitably present in reformedfuel.In order to alleviate the problemof COpoisoning andi mprove the power density of the cell,operating at temperature above 100 ℃ispreferred.Nafion-type perfluorosulfonated polymers have been typically used for PEMFC.However,the conductivity of Nafion-typepolymers is not high enoughto be usedfor fuel cell operations at higher temperature(>90 ℃) and atmospheric pressure because they dehy-drate under these condition.An additional problem which faces the introduction of PEMFCtechnology is that of supplying or storing hydrogen for cell operation,especially for vehicular applications.Consequently the use of alternative fuels such as methanol and ethanol is of interest,especially if thiscan be used directlyinthe fuel cell,without reformationto hydrogen.Ali mitation of the direct use of alcohol is thelower activity of oxida-tionin comparison to hydrogen,which means that power densities are considerably lower.Hence to i mprove activity and power outputhigher temperatures of operation are preferable.To achieve this goal,requires a newpolymer electrolyte membrane which exhibits stabilityand high conductivityin the absence of liquid water.Experi mental data on a polybenzi midazole based PEMFC were presented.Asi mple steady-stateisothermal model of the fuel cell is alsoused to aidin fuel cell performance opti misation.The governing equations involve the coupling of kinetic,ohmic and mass transport.Thispaper also considers the advances madeinthe performance of direct methanol and solid polymer electrolyte fuel cells and considers theirli mi-tations in relation to the source and type of fuels to be used.展开更多
Filter capacitors play an important role in altern-ating current(AC)-line filtering for stabilizing voltage,sup-pressing harmonics,and improving power quality.However,traditional aluminum electrolytic capacitors(AECs)...Filter capacitors play an important role in altern-ating current(AC)-line filtering for stabilizing voltage,sup-pressing harmonics,and improving power quality.However,traditional aluminum electrolytic capacitors(AECs)suffer from a large size,short lifespan,low power density,and poor reliability,which limits their use.In contrast,ultrafast supercapacitors(SCs)are ideal for replacing commercial AECs because of their extremely high power densities,fast charging and discharging,and excellent high-frequency re-sponse.We review the design principles and key parameters for ultrafast supercapacitors and summarize research pro-gress in recent years from the aspects of electrode materials,electrolytes,and device configurations.The preparation,structures,and frequency response performance of electrode materials mainly consisting of carbon materials such as graphene and carbon nanotubes,conductive polymers,and transition metal compounds,are focused on.Finally,future research directions for ultrafast SCs are suggested.展开更多
基金Project(G1999064903) supported by the National Key Fundamental Research and Development Program of China
文摘Based on the commercial CFD software CFX-4.3, two-phase flow of electrolyte in 156 kA drained aluminum reduction cells with a new structure was numerically simulated by multi-fluid model and k-ε turbulence model. The results show that the electrolyte flow in the drained cells is more even than in the conventional cells. Corresponding to center point feeding, the electrolyte flow in the drained cells is more advantageous to the release of anode gas, the dissolution and diffusion of alumina, and the gradient reduction of the electrolyte density and temperature. The average velocity of the electrolyte is 8.3 cm/s, and the maximum velocity is 59.5 cm/s. The average and maximum velocities of the gas are 23.2 cm/s and 61.1 cm/s, respectively. The cathode drained slope and anode cathode distance have certain effects on the electrolyte flow.
基金Project (G1999064903) supported by the National Key Fundamental Research and Development Programof China
文摘Based on the commercial computational fluid dynamics software CFX-4.3, electrolyte flow fields in a 156 kA pre-baked anode aluminum electrolysis cell were investigated in three different cases where the electrolyte melt was driven by different kinds of force, i.e. electromagnetic force only, the anode gas drag force only and both of the former two forces. The results show that when electromagnetic force was introduced only, most of the electrolyte moves horizontally; when anode gas drag force was introduced only, the electrolyte flows mainly around each anode with small circulation; when electromagnetic force and anode gas drag force were both introduced together, the structure of the electrolyte flow fields and the velocity of electrolyte are similar to that of the case where only anode gas drag force is used. The electrolyte flow fields are mainly determined by the anode gas drag force.
基金Project(21935006)supported by the National Natural Science Foundation of China。
文摘Lithium-sulfur(Li-S)batteries have attracted enormous interest due to their super-high theoretical energy density(2600 W·h/kg)in recent years.However,issues such as lithium dendrites and the shuttle effect severely hampered the large-scale application of Li-S batteries.Herein,a novel bifunctional gel polymer electrolyte,poly(N,Ndiallyl-N,N-dimethylammonium bis(trifluoromethylsulfonylimide))-P(VDF-HFP)(PDDA-TFSI-P(VDF-HFP),PTP),was prepared by anion exchange reaction to tackle the above problems.Benefited from the interaction between TFSI-and quaternary ammonium ion in PTP,a higher lithium-ion transference number was obtained,which could availably protect Li metal anodes.Meanwhile,due to the adsorption interactions between PDDA-TFSI and polysulfides(LiPSs),the shuttle effect of Li-S batteries could be alleviated effectively.Consequently,the Li symmetric batteries assembled with PTP cycled more than 1000 h and lithium metal anodes were protected effectively.Li-S batteries assembled with this polymer electrolyte show a discharge specific capacity of 813 mA·h/g after 200 cycles and 467 mA·h/g at 3 C,exhibiting excellent cycling stability and C-rates performance.
文摘One of the majorissuesli mitingtheintroduction of polymer electrolyte membranefuel cells(PEMFCs) is thelowtemperature ofoperation which makes platinum-based anode catalysts susceptible to poisoning by the trace amount of CO,inevitably present in reformedfuel.In order to alleviate the problemof COpoisoning andi mprove the power density of the cell,operating at temperature above 100 ℃ispreferred.Nafion-type perfluorosulfonated polymers have been typically used for PEMFC.However,the conductivity of Nafion-typepolymers is not high enoughto be usedfor fuel cell operations at higher temperature(>90 ℃) and atmospheric pressure because they dehy-drate under these condition.An additional problem which faces the introduction of PEMFCtechnology is that of supplying or storing hydrogen for cell operation,especially for vehicular applications.Consequently the use of alternative fuels such as methanol and ethanol is of interest,especially if thiscan be used directlyinthe fuel cell,without reformationto hydrogen.Ali mitation of the direct use of alcohol is thelower activity of oxida-tionin comparison to hydrogen,which means that power densities are considerably lower.Hence to i mprove activity and power outputhigher temperatures of operation are preferable.To achieve this goal,requires a newpolymer electrolyte membrane which exhibits stabilityand high conductivityin the absence of liquid water.Experi mental data on a polybenzi midazole based PEMFC were presented.Asi mple steady-stateisothermal model of the fuel cell is alsoused to aidin fuel cell performance opti misation.The governing equations involve the coupling of kinetic,ohmic and mass transport.Thispaper also considers the advances madeinthe performance of direct methanol and solid polymer electrolyte fuel cells and considers theirli mi-tations in relation to the source and type of fuels to be used.
文摘Filter capacitors play an important role in altern-ating current(AC)-line filtering for stabilizing voltage,sup-pressing harmonics,and improving power quality.However,traditional aluminum electrolytic capacitors(AECs)suffer from a large size,short lifespan,low power density,and poor reliability,which limits their use.In contrast,ultrafast supercapacitors(SCs)are ideal for replacing commercial AECs because of their extremely high power densities,fast charging and discharging,and excellent high-frequency re-sponse.We review the design principles and key parameters for ultrafast supercapacitors and summarize research pro-gress in recent years from the aspects of electrode materials,electrolytes,and device configurations.The preparation,structures,and frequency response performance of electrode materials mainly consisting of carbon materials such as graphene and carbon nanotubes,conductive polymers,and transition metal compounds,are focused on.Finally,future research directions for ultrafast SCs are suggested.