为及时辨识集约化水产养殖水质变化趋势、动态调控水质,确保无应激环境下健康养殖,该文提出了基于时序列相似数据的最小二乘支持向量回归机(least squares support vector regression,LSSVR)水质溶解氧在线预测模型。采用特征点分段时...为及时辨识集约化水产养殖水质变化趋势、动态调控水质,确保无应激环境下健康养殖,该文提出了基于时序列相似数据的最小二乘支持向量回归机(least squares support vector regression,LSSVR)水质溶解氧在线预测模型。采用特征点分段时间弯曲距离(feature points segmented time warping distance,FPSTWD)算法对在线采集的时间序列数据进行分段与相似度计算,以缩减规模的子序列数据集对LSSVR模型进行快速训练优化,实现了多个LSSVR子模型在线建模,将预测数据序列与LSSVR子模型的相似度匹配,自适应地选取最佳的子模型作为在线预测模型。应用该模型对集约化河蟹福利养殖水质参数溶解氧浓度进行在线预测,模型评价指标中最大相对误差、平均绝对百分比误差、相对均方根误差和运行时间分别为4.76%、8.18%、5.23%、8.32 s。研究结果表明,与其他预测方法相比,该模型具有较好的综合预测性能,能够满足河蟹福利养殖水质在线预测的实际需求,并为集约化水产养殖水质精准调控提供研究基础。展开更多
文摘探究教师注意力对于评估课堂教师行为具有极其重要的研究价值。然而,现有的教师注意力识别算法存在无法应对极端头部姿态角度等问题。为此,提出一种基于6DRep Net360模型的教师注意力状态识别算法,提升极端角度中头部姿态估计算法的准确性。相较于传统的依赖条件判断来分类教师注意力状态的方法,设计一种基于支持向量机(SVM)的教师注意力分类模型,对复杂头部姿态角度进行注意力状态的精准识别。为进一步解决算法稳定性和准确性带来的误差数据,提出基于滑动窗口的数据清洗算法,有效提高整体识别结果的真实性和可靠性。通过在构建的CCNUTeacherS tat e数据集上进行一系列的算法评估,实验结果表明,所提出的教师注意力识别算法在CCNUTeacherS tate数据集上达到了90.67%的准确率。