Hepatocellular carcinoma(HCC),which is essentially primary liver cancer,is closely related to CD8^(+)T cell immune infiltration and immune suppression.We constructed a CD8^(+)T cells related risk score model to predic...Hepatocellular carcinoma(HCC),which is essentially primary liver cancer,is closely related to CD8^(+)T cell immune infiltration and immune suppression.We constructed a CD8^(+)T cells related risk score model to predict the prognosis of HCC patients and provided therapeutic guidance based on the risk score.Using integrated bulk RNA sequencing(RNA-seq)and single-cell RNA sequencing(scRNA-seq)datasets,we identified stable CD8^(+)T cell signatures.Based on these signatures,a 3-gene risk score model,comprised of KLRB1,RGS 2,and TNFRSF1B was constructed.The risk score model was well validated through an independent external validation cohort.We divided patients into high-risk and low-risk groups according to the risk score and compared the differences in immune microenvironment between these two groups.Compared with low-risk patients,high-risk patients have higher M2-type macrophage content(P<0.0001)and lower CD8^(+)T cells infiltration(P<0.0001).High-risk patients predict worse response to immunotherapy treatment than low-risk patients(P<0.01).Drug sensitivity analysis shows that PI3K-β inhibitor AZD6482 and TGFβRII inhibitor SB505124 may be suitable therapies for high-risk patients,while the IGF-1R inhibitor BMS-754807 or the novel pyrimidine-based anti-tumor metabolic drug Gemcitabine could be potential therapeutic choices for low-risk patients.Moreover,expression of these 3-gene model was verified by immunohistochemistry.In summary,the establishment and validation of a CD8^(+)T cell-derived risk model can more accurately predict the prognosis of HCC patients and guide the construction of personalized treatment plans.展开更多
Potassium-calcium activates channel subfamily N member 3(KCNN3/SK3/KCa2.3)is involved in regulating cellular calcium signaling,muscle contraction and neurotransmitter release.Dysregulation of the KCNN3 channel is asso...Potassium-calcium activates channel subfamily N member 3(KCNN3/SK3/KCa2.3)is involved in regulating cellular calcium signaling,muscle contraction and neurotransmitter release.Dysregulation of the KCNN3 channel is associated with the development of various tumors.We use bioinformatics analysis to identify whether KCNN3 regulates the occurrence and development of stomach adenocarcinoma(STAD)as a prognostic target.By analyzing the Human Protein Atlas(HPA)database and The Cancer Genome Atlas(TCGA)database,we found that the protein and mRNA levels of KCNN3 were dramatically reduced in STAD,and TCGA database showed that KCNN3 significantly correlated with the prognosis and clinical features of STAD.In addition,we found that high expression of KCNN3 in STAD reduced the IC 50 of several drugs in STAD cells,suggesting that high expression of KCNN3 correlated with the drug sensitivity of STAD.To investigate the underlying biological mechanism,we identified a potential KCNN3 interaction factor,tumor necrosis factor receptor superfamily member 7(CD27/TNFRSF7),which is expressed at low levels in STAD.RT-qPCR and Western blotting confirmed that KCNN3 and CD27 positively correlated with each other at protein and mRNA levels,and co-immunoprecipitation and immunofluorescence experiments confirmed that the two proteins interact and colocalize in the cytoplasm.Moreover,we confirmed the inhibitory effect of KCNN3 on the proliferation,migration and invasion of human STAD cells in vitro and in vivo through subcutaneous tumorigenesis and cellular experiments.Furthermore,GO/KEGG enrichment analysis showed that KCNN3 was enriched in signaling pathways regulating the immune response and calcium or metal ion transport.Lastly,we verified through cell co-culture,RT-qPCR and CCK8 assays that high expression of KCNN3 can promote the increase of T cell activating factor and the killing effect of T cells on STAD cells.Therefore,our results suggest that KCNN3 is a potential inhibitory factor affecting the occurrence and progression of STAD.展开更多
Objective Triple-negative breast cancer(TNBC)is the breast cancer subtype with the worst prognosis,and lacks effective therapeutic targets.Colony stimulating factors(CSFs)are cytokines that can regulate the production...Objective Triple-negative breast cancer(TNBC)is the breast cancer subtype with the worst prognosis,and lacks effective therapeutic targets.Colony stimulating factors(CSFs)are cytokines that can regulate the production of blood cells and stimulate the growth and development of immune cells,playing an important role in the malignant progression of TNBC.This article aims to construct a novel prognostic model based on the expression of colony stimulating factors-related genes(CRGs),and analyze the sensitivity of TNBC patients to immunotherapy and drug therapy.Methods We downloaded CRGs from public databases and screened for differentially expressed CRGs between normal and TNBC tissues in the TCGA-BRCA database.Through LASSO Cox regression analysis,we constructed a prognostic model and stratified TNBC patients into high-risk and low-risk groups based on the colony stimulating factors-related genes risk score(CRRS).We further analyzed the correlation between CRRS and patient prognosis,clinical features,tumor microenvironment(TME)in both high-risk and low-risk groups,and evaluated the relationship between CRRS and sensitivity to immunotherapy and drug therapy.Results We identified 842 differentially expressed CRGs in breast cancer tissues of TNBC patients and selected 13 CRGs for constructing the prognostic model.Kaplan-Meier survival curves,time-dependent receiver operating characteristic curves,and other analyses confirmed that TNBC patients with high CRRS had shorter overall survival,and the predictive ability of CRRS prognostic model was further validated using the GEO dataset.Nomogram combining clinical features confirmed that CRRS was an independent factor for the prognosis of TNBC patients.Moreover,patients in the high-risk group had lower levels of immune infiltration in the TME and were sensitive to chemotherapeutic drugs such as 5-fluorouracil,ipatasertib,and paclitaxel.Conclusion We have developed a CRRS-based prognostic model composed of 13 differentially expressed CRGs,which may serve as a useful tool for predicting the prognosis of TNBC patients and guiding clinical treatment.Moreover,the key genes within this model may represent potential molecular targets for future therapies of TNBC.展开更多
Escherichia coli O157 : H7 is a foodborne pathogen that poses a major threat to public health. Epidemiologic investigations have identified dairy cows, especially calves, are the principal reservoir of E. coli O157 : ...Escherichia coli O157 : H7 is a foodborne pathogen that poses a major threat to public health. Epidemiologic investigations have identified dairy cows, especially calves, are the principal reservoir of E. coli O157 : H7. In this study, based on the results, E. coli O157 : H7 was the main cause of E. coli disease outbreak in late October, 2015, and more than 90% of newborn calves died of serious diarrhea. Through further experiments, the drug sensitivity and resistance of the strain, the expression of the virulence gene and virulence pathogenicity were studied. E. coli O157 : H7 isolates were resistant to 12 antibiotics including penicillin, tetracycline and ampicillin, and were sensitive to eight antibiotics including cefoperazone, ceftazidime and amikacin. Resistance genes included tetB, strB, aadB, aphA, floR, TEM and virulence genes included stx1, eaeA and hlyA. Using specific pathogen free mice, the result showed that the isolate was pathogenic with a median lethal dose of 7.9×107 CFU · mL-1. This study described the pathogenesis and clinical manifestations of E. coli O157 : H7 infection. These results guided the use of antibiotics in prevent and control of bacterial infections in the future.展开更多
基金国家自然科学基金项目(No.81902513)山西省应用基础研究计划项目(No.202303021211114 and 202103021224228)山西省高等教育百亿工程“科技引导”专项(No.BYJL047)资助。
文摘Hepatocellular carcinoma(HCC),which is essentially primary liver cancer,is closely related to CD8^(+)T cell immune infiltration and immune suppression.We constructed a CD8^(+)T cells related risk score model to predict the prognosis of HCC patients and provided therapeutic guidance based on the risk score.Using integrated bulk RNA sequencing(RNA-seq)and single-cell RNA sequencing(scRNA-seq)datasets,we identified stable CD8^(+)T cell signatures.Based on these signatures,a 3-gene risk score model,comprised of KLRB1,RGS 2,and TNFRSF1B was constructed.The risk score model was well validated through an independent external validation cohort.We divided patients into high-risk and low-risk groups according to the risk score and compared the differences in immune microenvironment between these two groups.Compared with low-risk patients,high-risk patients have higher M2-type macrophage content(P<0.0001)and lower CD8^(+)T cells infiltration(P<0.0001).High-risk patients predict worse response to immunotherapy treatment than low-risk patients(P<0.01).Drug sensitivity analysis shows that PI3K-β inhibitor AZD6482 and TGFβRII inhibitor SB505124 may be suitable therapies for high-risk patients,while the IGF-1R inhibitor BMS-754807 or the novel pyrimidine-based anti-tumor metabolic drug Gemcitabine could be potential therapeutic choices for low-risk patients.Moreover,expression of these 3-gene model was verified by immunohistochemistry.In summary,the establishment and validation of a CD8^(+)T cell-derived risk model can more accurately predict the prognosis of HCC patients and guide the construction of personalized treatment plans.
文摘Potassium-calcium activates channel subfamily N member 3(KCNN3/SK3/KCa2.3)is involved in regulating cellular calcium signaling,muscle contraction and neurotransmitter release.Dysregulation of the KCNN3 channel is associated with the development of various tumors.We use bioinformatics analysis to identify whether KCNN3 regulates the occurrence and development of stomach adenocarcinoma(STAD)as a prognostic target.By analyzing the Human Protein Atlas(HPA)database and The Cancer Genome Atlas(TCGA)database,we found that the protein and mRNA levels of KCNN3 were dramatically reduced in STAD,and TCGA database showed that KCNN3 significantly correlated with the prognosis and clinical features of STAD.In addition,we found that high expression of KCNN3 in STAD reduced the IC 50 of several drugs in STAD cells,suggesting that high expression of KCNN3 correlated with the drug sensitivity of STAD.To investigate the underlying biological mechanism,we identified a potential KCNN3 interaction factor,tumor necrosis factor receptor superfamily member 7(CD27/TNFRSF7),which is expressed at low levels in STAD.RT-qPCR and Western blotting confirmed that KCNN3 and CD27 positively correlated with each other at protein and mRNA levels,and co-immunoprecipitation and immunofluorescence experiments confirmed that the two proteins interact and colocalize in the cytoplasm.Moreover,we confirmed the inhibitory effect of KCNN3 on the proliferation,migration and invasion of human STAD cells in vitro and in vivo through subcutaneous tumorigenesis and cellular experiments.Furthermore,GO/KEGG enrichment analysis showed that KCNN3 was enriched in signaling pathways regulating the immune response and calcium or metal ion transport.Lastly,we verified through cell co-culture,RT-qPCR and CCK8 assays that high expression of KCNN3 can promote the increase of T cell activating factor and the killing effect of T cells on STAD cells.Therefore,our results suggest that KCNN3 is a potential inhibitory factor affecting the occurrence and progression of STAD.
文摘Objective Triple-negative breast cancer(TNBC)is the breast cancer subtype with the worst prognosis,and lacks effective therapeutic targets.Colony stimulating factors(CSFs)are cytokines that can regulate the production of blood cells and stimulate the growth and development of immune cells,playing an important role in the malignant progression of TNBC.This article aims to construct a novel prognostic model based on the expression of colony stimulating factors-related genes(CRGs),and analyze the sensitivity of TNBC patients to immunotherapy and drug therapy.Methods We downloaded CRGs from public databases and screened for differentially expressed CRGs between normal and TNBC tissues in the TCGA-BRCA database.Through LASSO Cox regression analysis,we constructed a prognostic model and stratified TNBC patients into high-risk and low-risk groups based on the colony stimulating factors-related genes risk score(CRRS).We further analyzed the correlation between CRRS and patient prognosis,clinical features,tumor microenvironment(TME)in both high-risk and low-risk groups,and evaluated the relationship between CRRS and sensitivity to immunotherapy and drug therapy.Results We identified 842 differentially expressed CRGs in breast cancer tissues of TNBC patients and selected 13 CRGs for constructing the prognostic model.Kaplan-Meier survival curves,time-dependent receiver operating characteristic curves,and other analyses confirmed that TNBC patients with high CRRS had shorter overall survival,and the predictive ability of CRRS prognostic model was further validated using the GEO dataset.Nomogram combining clinical features confirmed that CRRS was an independent factor for the prognosis of TNBC patients.Moreover,patients in the high-risk group had lower levels of immune infiltration in the TME and were sensitive to chemotherapeutic drugs such as 5-fluorouracil,ipatasertib,and paclitaxel.Conclusion We have developed a CRRS-based prognostic model composed of 13 differentially expressed CRGs,which may serve as a useful tool for predicting the prognosis of TNBC patients and guiding clinical treatment.Moreover,the key genes within this model may represent potential molecular targets for future therapies of TNBC.
文摘Escherichia coli O157 : H7 is a foodborne pathogen that poses a major threat to public health. Epidemiologic investigations have identified dairy cows, especially calves, are the principal reservoir of E. coli O157 : H7. In this study, based on the results, E. coli O157 : H7 was the main cause of E. coli disease outbreak in late October, 2015, and more than 90% of newborn calves died of serious diarrhea. Through further experiments, the drug sensitivity and resistance of the strain, the expression of the virulence gene and virulence pathogenicity were studied. E. coli O157 : H7 isolates were resistant to 12 antibiotics including penicillin, tetracycline and ampicillin, and were sensitive to eight antibiotics including cefoperazone, ceftazidime and amikacin. Resistance genes included tetB, strB, aadB, aphA, floR, TEM and virulence genes included stx1, eaeA and hlyA. Using specific pathogen free mice, the result showed that the isolate was pathogenic with a median lethal dose of 7.9×107 CFU · mL-1. This study described the pathogenesis and clinical manifestations of E. coli O157 : H7 infection. These results guided the use of antibiotics in prevent and control of bacterial infections in the future.