期刊文献+
共找到91篇文章
< 1 2 5 >
每页显示 20 50 100
Dirichlet过程及其在自然语言处理中的应用 被引量:9
1
作者 徐谦 周俊生 陈家骏 《中文信息学报》 CSCD 北大核心 2009年第5期25-32,46,共9页
Dirichlet过程是一种典型的变参数贝叶斯模型,其优点是参数的个数和性质灵活可变,可通过模型和数据来自主地计算,近年来它已成为机器学习和自然语言处理研究领域中的一个研究热点。该文较为系统的介绍了Dirichlet过程的产生、发展,并重... Dirichlet过程是一种典型的变参数贝叶斯模型,其优点是参数的个数和性质灵活可变,可通过模型和数据来自主地计算,近年来它已成为机器学习和自然语言处理研究领域中的一个研究热点。该文较为系统的介绍了Dirichlet过程的产生、发展,并重点介绍了其模型计算,同时结合自然语言处理中的具体应用问题进行了详细分析。最后讨论了Dirichlet过程未来的研究方向和发展趋势。 展开更多
关键词 计算机应用 中文信息处理 变参数贝叶斯模型 dirichlet过程 dirichlet过程混合模型 马尔可夫链蒙特卡罗
在线阅读 下载PDF
基于半监督学习的煤层钻孔预抽瓦斯状态评价方法
2
作者 晏立 文虎 +1 位作者 王振平 金永飞 《工矿自动化》 北大核心 2025年第3期113-121,共9页
目前单一钻孔抽采状态评价方法通常依赖于瓦斯抽采浓度,而忽视了煤层瓦斯赋存的多样性。监督学习模型依赖于样本的特征标记,在样本量较大时,人工标注的成本较高;无监督学习模型缺乏样本标记,无法实现定性评价。针对上述问题,提出一种基... 目前单一钻孔抽采状态评价方法通常依赖于瓦斯抽采浓度,而忽视了煤层瓦斯赋存的多样性。监督学习模型依赖于样本的特征标记,在样本量较大时,人工标注的成本较高;无监督学习模型缺乏样本标记,无法实现定性评价。针对上述问题,提出一种基于半监督学习的煤层钻孔预抽瓦斯状态评价方法。构建了包含甲烷浓度、抽采负压、环境温度等8项指标的多维度评价体系,采用层次分析法(AHP)与模糊评价法(FEM)结合的权重赋值方法,建立抽采效果等级划分标准。在此基础上,提出基于高斯混合模型(GMM)与K-Means算法的半监督学习模型(SSGMM/SSK-Means),通过融合少量人工标注样本与大量未标注数据,实现单一钻孔抽采状态的动态分类。SSGMM聚集度更好,SSK-Means效率更高,形成“精度-效率”的互补关系。在陕西黄陵二号煤矿215工作面的应用结果表明:SSGMM和SSK-Means的最大聚集度(MVCR)和修正Rand指数(ARI)分别达82.64%和85.83%,显著优于传统聚类方法;通过动态反馈机制优化后,原等级为“差”的钻孔抽采效率提升5.26%~5.80%,补差率达100%。 展开更多
关键词 煤层瓦斯 抽采效果评价 半监督学习 层次分析法 模糊评价法 高斯混合模型 K-MEANS算法
在线阅读 下载PDF
基于时间Dirichlet过程混合模型的在线目标跟踪 被引量:1
3
作者 孙建中 熊忠阳 张玉芳 《系统仿真学报》 CAS CSCD 北大核心 2013年第6期1155-1160,共6页
针对目标跟踪过程中,可变目标表观的特征数据会发生"分布漂移"的问题,提出一种基于非参贝叶斯多模表观模型的目标跟踪方法。首先,以时间Dirichlet过程为先验分布,把先前估计的目标样本划分为不同的聚集,使得每个聚集表示一类... 针对目标跟踪过程中,可变目标表观的特征数据会发生"分布漂移"的问题,提出一种基于非参贝叶斯多模表观模型的目标跟踪方法。首先,以时间Dirichlet过程为先验分布,把先前估计的目标样本划分为不同的聚集,使得每个聚集表示一类表观,同时,每个表观类被建模为判别式分类器;然后,基于贝叶斯后验推断,权衡先前表观模型的分类误差和拆分聚集的代价,从数据中自主学习表观模型;最后,基于Noisy-OR模型,以贪心(Greedy)策略协同各表观分类器判别出目标。仿真结果表明该方法能较好的跟踪可变目标表观,改善了目标跟踪性能。 展开更多
关键词 目标跟踪 在线多示例Boosting算法 时间dirichlet过程混合模型 非参贝叶斯模型
在线阅读 下载PDF
基于Dirichlet过程混合的高斯过程模型混合采样推理
4
作者 雷菊阳 黄克 +1 位作者 许海翔 史习智 《上海交通大学学报》 EI CAS CSCD 北大核心 2010年第2期271-275,共5页
提出了基于Dirichlet过程混合的高斯过程模型揭示复杂动态系统结构数据的多态性的内在机制.针对均值结构与协方差结构稀疏性的差异性,设计了参数先验与非参数先验来构建基于Polya urn与过松弛层采样的混合采样框架体系.该混合采样方案... 提出了基于Dirichlet过程混合的高斯过程模型揭示复杂动态系统结构数据的多态性的内在机制.针对均值结构与协方差结构稀疏性的差异性,设计了参数先验与非参数先验来构建基于Polya urn与过松弛层采样的混合采样框架体系.该混合采样方案不但能够在统一的Metropolis-Hasting(M-H)概率评价准则下实现,而且能够最大限度地克服高斯随机走步的缺陷,方便、快速地获得马尔科夫样本链的展开.仿真结果表明,混合采样算法比高斯过程回归模型及高斯过程函数回归混合模型具有更广泛的适应性及更好的预测效果. 展开更多
关键词 混合采样 非参数贝叶斯推理 dirichlet过程混合 高斯过程
在线阅读 下载PDF
基于Dirichlet过程混合模型的滚动轴承运行状态识别
5
作者 瞿家明 周易文 +1 位作者 王恒 黄希 《轴承》 北大核心 2018年第9期58-62,共5页
针对滚动轴承的运行状态识别问题,利用典型DP混合模型良好的聚类特性,提出了基于DPMM的滚动轴承运行状态识别算法,并推导了算法聚类的详细步骤。利用轴承状态监测数据进行了验证和分析,结果表明:DPMM算法不依赖于训练样本,模型结构能够... 针对滚动轴承的运行状态识别问题,利用典型DP混合模型良好的聚类特性,提出了基于DPMM的滚动轴承运行状态识别算法,并推导了算法聚类的详细步骤。利用轴承状态监测数据进行了验证和分析,结果表明:DPMM算法不依赖于训练样本,模型结构能够随着观测数据的变化实现自适应变化和动态调整,自动识别轴承的运行状态数;同时,识别结果不依赖于DPMM算法初始参数的选择,具有较强的稳定性和适应性。 展开更多
关键词 滚动轴承 状态识别 非参数BayeS模型 dirichlet过程混合模型
在线阅读 下载PDF
多种残差补偿的贝叶斯网络下的短期交通预测 被引量:1
6
作者 王桐 杨光新 欧阳敏 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2024年第9期1810-1817,共8页
为了解决道路车流量的数据生成条件时变场景下的交通预测问题,本文建立道路交通控制与交通流预测数据之间的联系,提出一种基于多种残差补偿的贝叶斯网络的短期交通预测方法。提取城市中大规模多路口主干道车道及车辆信息构造多个平行的... 为了解决道路车流量的数据生成条件时变场景下的交通预测问题,本文建立道路交通控制与交通流预测数据之间的联系,提出一种基于多种残差补偿的贝叶斯网络的短期交通预测方法。提取城市中大规模多路口主干道车道及车辆信息构造多个平行的贝叶斯网络,使用贝叶斯关系及期望最大化算法进行短期交通预测。再通过数据自相关残差补偿、车辆换道和多路口连通性的线性残差补偿提高了预测的精度,解决了传统研究对相邻路口和换道导致的误差等因素处理能力不足的问题。仿真结果表明:使用贝叶斯网络预测交通流,并基于车辆行为的残差进行精度补偿,可以更准确地预测复杂的交通演化场景的短期交通流。 展开更多
关键词 大规模 交通预测 贝叶斯网络 混合高斯模型 EM算法 残差补偿 自回归滑动模型 LSTM网络 线性过程
在线阅读 下载PDF
分布式光伏接入的配电网规划综合评价方法 被引量:2
7
作者 鲁晓秋 叶影 +3 位作者 曹春 孟建辉 汤衡 何军 《华北电力大学学报(自然科学版)》 CAS 北大核心 2024年第3期74-82,100,共10页
为充分考虑分布式光伏接入对配电网规划评价的影响,基于传统配电网的规划评价体系,提出一种计及光伏输出功率随机性和相关性的有源配电网规划评价方法。首先,为精准刻画光伏出力的随机性与波动性,提出基于改进最优粒子群算法的高斯混合... 为充分考虑分布式光伏接入对配电网规划评价的影响,基于传统配电网的规划评价体系,提出一种计及光伏输出功率随机性和相关性的有源配电网规划评价方法。首先,为精准刻画光伏出力的随机性与波动性,提出基于改进最优粒子群算法的高斯混合模型,计算多个光伏出力的联合概率密度函数;然后,将潮流方程线性化,推导节点电压和线路潮流线性表达式,分别获取多节点电压和多线路潮流的联合概率分布,并基于此构建考虑光伏接入后的配电网可靠性指标和电压质量指标等。最后,将新构建的电压越限风险指标、电压偏差指标以及潮流断面越限风险指标等新型电网规划评价指标纳入评估体系中,采用层次分析法计算得到组合权重并组合得到最终综合评价结果。仿真结果验证了该评价方法的有效性。 展开更多
关键词 配电网规划评价 综合评价指标体系 电压分布指标 高斯混合模型 最优粒子群算法 层次分析法
在线阅读 下载PDF
GSM-CrackFormer:基于高斯尺度混合模型的多应用场景裂缝检测方法
8
作者 黄廷辉 李升典 《计算机辅助设计与图形学学报》 CSCD 北大核心 2024年第12期2029-2039,共11页
传统图像处理方法或机器学习方法解决裂缝检测问题通常仅适应特定场景.随着场景切换,此类方法的检测精度会受到显著的影响,在多应用场景下缺乏鲁棒性.为了适应多应用场景,在原裂缝检测方法CrackFormer基础上进行出改进,提出一种基于高... 传统图像处理方法或机器学习方法解决裂缝检测问题通常仅适应特定场景.随着场景切换,此类方法的检测精度会受到显著的影响,在多应用场景下缺乏鲁棒性.为了适应多应用场景,在原裂缝检测方法CrackFormer基础上进行出改进,提出一种基于高斯尺度混合模型的检测方法——GSM-CrackFormer.首先通过高斯尺度混合模型构建描述裂缝特征的高斯分布的模块;然后结合门控机制设计信号转换模块,将由分布生成的裂缝特征信息转化为锐化裂缝语义特征的指导信号,通过新颖的上下采样策略进一步平衡模型感受野与其捕获细节特征能力之间的关系;最后调整损失函数,缓解裂缝像素与非裂缝像素之间不平衡的问题.在多样化场景数据集CrackSeg9k上进行训练和评估的实验结果表明,所提方法优于文中所对比的方法,其全局最佳(ODS)指标达到0.784,单图最佳(OIS)指标达到0.785,平均交并比(MIoU)达到0.828. 展开更多
关键词 裂缝检测 图像处理方法 高斯尺度混合模型 裂缝检测场景 上下采样策略
在线阅读 下载PDF
一种基于多极化散射机理的极化SAR图像舰船目标检测方法 被引量:9
9
作者 文伟 曹雪菲 +3 位作者 张学峰 陈渤 王英华 刘宏伟 《电子与信息学报》 EI CSCD 北大核心 2017年第1期103-109,共7页
针对基于单一极化特性增强的极化SAR图像目标检测方法的缺陷,该文将DP(Dirichlet Process)混合隐变量SVM模型(DPLVSVM)应用于极化SAR图像舰船目标检测,提出一种基于多极化散射机理的检测方法。该方法通过联合Dirichlet过程混合与Bayes ... 针对基于单一极化特性增强的极化SAR图像目标检测方法的缺陷,该文将DP(Dirichlet Process)混合隐变量SVM模型(DPLVSVM)应用于极化SAR图像舰船目标检测,提出一种基于多极化散射机理的检测方法。该方法通过联合Dirichlet过程混合与Bayes SVM模型,将信号空间划分成若干局部区域,然后在每一局部区域学习一个独立的极化检测器,并将各局部检测器进行组合实现全局多极化散射机理的目标检测。模型采用非参数化Bayes方法自动确定局部区域数量,在完全Bayes框架下,将局部区域划分及检测器学习进行联合优化,保证了各局部区域样本的可分性。另外,为了降低极化特征冗余,该文进一步提出带特征选择功能的稀疏提升DP混合隐变量SVM模型(SPDPLVSVM),提高模型的推广能力。该模型由于采用共轭先验分布,因而可以利用Gibbs采样方法进行高效求解。在RADARSAT-2数据上进行的实验验证了所提方法的有效性。 展开更多
关键词 极化SAR 目标检测 dirichlet过程混合模型 BAYES SVM 特征选择
在线阅读 下载PDF
基于PU学习算法的虚假评论识别研究 被引量:31
10
作者 任亚峰 姬东鸿 +1 位作者 张红斌 尹兰 《计算机研究与发展》 EI CSCD 北大核心 2015年第3期639-648,共10页
识别虚假评论有着重要的理论意义与现实价值.先前工作集中于启发式策略和传统的全监督学习算法.最近研究表明:人类无法通过先验知识有效识别虚假评论,手工标注的数据集必定存在一定数量的误例,因此简单使用传统的全监督学习算法识别虚... 识别虚假评论有着重要的理论意义与现实价值.先前工作集中于启发式策略和传统的全监督学习算法.最近研究表明:人类无法通过先验知识有效识别虚假评论,手工标注的数据集必定存在一定数量的误例,因此简单使用传统的全监督学习算法识别虚假评论并不合理.容易被错误标注的样例称为间谍样例,如何确定这些样例的类别标签将直接影响分类器的性能.基于少量的真实评论和大量的未标注评论,提出一种创新的PU(positive and unlabeled)学习框架来识别虚假评论.首先,从无标注数据集中识别出少量可信度较高的负例.其次,通过整合LDA(latent Dirichlet allocation)和K-means,分别计算出多个代表性的正例和负例.接着,基于狄利克雷过程混合模型(Dirichlet process mixture model,DPMM),对所有间谍样例进行聚类,混合种群性和个体性策略来确定间谍样例的类别标签.最后,多核学习算法被用来训练最终的分类器.数值实验证实了所提算法的有效性,超过当前的基准. 展开更多
关键词 虚假评论 全监督学习 PU学习 狄利克雷过程混合模型 多核学习
在线阅读 下载PDF
基于高斯分布改进C-V模型的植物病斑彩色图像分割 被引量:12
11
作者 田杰 胡秋霞 马孝义 《农业工程学报》 EI CAS CSCD 北大核心 2013年第16期166-173,共8页
为了使C-V模型能够准确快速分割植物病斑图像,该文引入高斯混合模型来构建C-V模型,针对基于加权颜色信息的C-V模型处理时间长,R、G、B通道能量系数难确定等问题,结合高斯混合模型和C-V模型对病叶图像进行分割。先选中病斑区域中一点,以... 为了使C-V模型能够准确快速分割植物病斑图像,该文引入高斯混合模型来构建C-V模型,针对基于加权颜色信息的C-V模型处理时间长,R、G、B通道能量系数难确定等问题,结合高斯混合模型和C-V模型对病叶图像进行分割。先选中病斑区域中一点,以其3×3邻域像素均值作为C-V模型中曲线的内部能量均值;利用高斯混合模型对病斑图像建模,并采用高斯混合模型先验概率初始化C-V模型的水平集函数;最后分别以图像R、G、B通道中目标和背景像素均值的比例作为3个通道的权值,演化水平集函数的分割曲线。试验结果表明,该方法能够有效地分割出植物病斑,并在分割性能上优于基于加权颜色信息的C-V模型及传统C-V模型。本文的研究结果可为植物病斑分割提供参考。 展开更多
关键词 农作物 图像处理 模型 高斯混合模型 C-V模型
在线阅读 下载PDF
应用字典学习算法改善Bayer格式图像彩色恢复效果 被引量:6
12
作者 朱波 汶德胜 +2 位作者 王飞 李华 宋宗玺 《电子与信息学报》 EI CSCD 北大核心 2013年第4期812-819,共8页
利用单片探测器获取彩色图像,插值算法的优劣对结果起着决定性的作用。为了改善恢复效果,该文设计了一种基于字典学习的非线性Bayer格式图像彩色插值算法。根据图像梯度的变化,首先,在上下左右方向利用局部方向插值方法(LDI)对Bayer格... 利用单片探测器获取彩色图像,插值算法的优劣对结果起着决定性的作用。为了改善恢复效果,该文设计了一种基于字典学习的非线性Bayer格式图像彩色插值算法。根据图像梯度的变化,首先,在上下左右方向利用局部方向插值方法(LDI)对Bayer格式图像进行合并计算,用高斯混合模型(GMM)分类法训练字典,运用主分量分析(PCA)方法提取训练结果中的主要分量为学习提供样本,通过学习,得到R,B通道缺失的G分量。然后,应用G分量,插值得到另外两种缺失分量R和B,从而得到彩色图像。选取McMaster图像集作为字典,分别用算法对标准图像和使用DALSA公司彩色CMOS探测器开发的相机实际拍摄的图像进行插值恢复,较其它几种算法,视觉上伪彩色最少,峰值信噪比最优。整体性能优于现有的很多其它插值算法。 展开更多
关键词 图像处理 BAYER格式 去马赛克 字典学习 高斯混合模型
在线阅读 下载PDF
基于多阶段动态PCA的发酵过程故障监测 被引量:10
13
作者 齐咏生 王普 +1 位作者 高学金 陈修哲 《北京工业大学学报》 EI CAS CSCD 北大核心 2012年第10期1474-1481,共8页
针对间隙发酵过程具有多阶段、批次不等长,且过程动态非线性往往与发酵阶段密切相关等特点,提出一种基于多阶段动态主元分析(principal component analysis,PCA)的故障监测策略.该方法采用高斯混合模型(Gaussian mixture model,GMM)对... 针对间隙发酵过程具有多阶段、批次不等长,且过程动态非线性往往与发酵阶段密切相关等特点,提出一种基于多阶段动态主元分析(principal component analysis,PCA)的故障监测策略.该方法采用高斯混合模型(Gaussian mixture model,GMM)对过程数据进行聚类,能客观反映不同阶段操作模态的数据分布特点,可实现子阶段划分.针对各批次阶段划分后存在的不同步问题,采用动态时间错位(dynamic time warping,DTW)方法对各阶段进行轨迹同步,对同步后的子阶段建立动态PCA模型.最后以工业青霉素发酵过程和重组大肠杆菌制备白介素-2发酵过程为背景,采用多阶段动态PCA策略对其进行故障监测,发现算法能有效降低运行过程的漏报和误报率,验证了算法的有效性。 展开更多
关键词 发酵过程 动态时间错位 高斯混合模型 主元分析
在线阅读 下载PDF
基于GMM的间歇过程故障检测 被引量:17
14
作者 王静 胡益 侍洪波 《自动化学报》 EI CSCD 北大核心 2015年第5期899-905,共7页
对间歇过程的多操作阶段进行划分时,往往会被离群点和噪声干扰,影响建模的精确性,针对此问题提出一种新的方法:主元分析–多方向高斯混合模型(Principal component analysis-multiple Gaussian mixture model,PCA-MGMM)建模方法.首先用... 对间歇过程的多操作阶段进行划分时,往往会被离群点和噪声干扰,影响建模的精确性,针对此问题提出一种新的方法:主元分析–多方向高斯混合模型(Principal component analysis-multiple Gaussian mixture model,PCA-MGMM)建模方法.首先用最短长度法对数据进行等长处理,融合不同展开方法相结合的处理方式消除数据预估问题;利用主元分析方法将数据转换到对故障较为敏感的低维子空间中,得到主元的同时消除了离群点和噪声的干扰;通过改进的高斯混合模型(Gaussian mixture model,GMM)算法对各阶段主元进行聚类,减少了运算量的同时自动得到最佳高斯成分和对应的统计分布参数;最后将局部指标融合为全局概率监控指标,实现了连续的在线监控.通过一个实际的半导体制造过程的仿真研究验证了所提方法的有效性. 展开更多
关键词 间歇过程 多阶段操作 故障检测 高斯混合模型 全局概率指标
在线阅读 下载PDF
高斯混合分布激光中心线提取方法 被引量:8
15
作者 刘巍 张驰 +3 位作者 刘阳 王灵丽 樊超楠 贾振元 《激光与红外》 CAS CSCD 北大核心 2015年第11期1397-1402,共6页
针对激光辅助立体视觉测量中的非高斯非对称分布激光条的匹配中心线提取精度较低的问题,提出一种基于高斯混合模型的激光中心线提取方法。首先分析了激光散斑对图像的影响,选择均值滤波方法有效去除激光散斑噪声;然后利用最大类间方差(O... 针对激光辅助立体视觉测量中的非高斯非对称分布激光条的匹配中心线提取精度较低的问题,提出一种基于高斯混合模型的激光中心线提取方法。首先分析了激光散斑对图像的影响,选择均值滤波方法有效去除激光散斑噪声;然后利用最大类间方差(OTSU)阈值分割方法对光条位置进行粗定位;最后,利用本文提出的高斯混合模型提取激光条亚像素中心线,该模型可准确地描述激光条横截面光强分布特性,从而能够实现光条中心极值点的高精度提取。实验结果表明该方法能够高效稳定的提取激光条中心线。 展开更多
关键词 立体视觉测量 图像处理 中心提取算法 激光光强分布 高斯混合模型
在线阅读 下载PDF
基于狄利克雷混合模型的刀具磨损量在线估计 被引量:8
16
作者 于劲松 时祎瑜 +1 位作者 梁爽 唐荻音 《仪器仪表学报》 EI CAS CSCD 北大核心 2017年第3期689-694,共6页
提出了一种基于狄利克雷混合模型的刀具磨损状态监测和磨损量估计的新方法。该方法将刀具磨损过程描述为磨损量的累积过程,通过对磨损增量的连续估计获得刀具当前的磨损量估计。首先对原始力信号进行特征提取,接着在不确定磨损增量状态... 提出了一种基于狄利克雷混合模型的刀具磨损状态监测和磨损量估计的新方法。该方法将刀具磨损过程描述为磨损量的累积过程,通过对磨损增量的连续估计获得刀具当前的磨损量估计。首先对原始力信号进行特征提取,接着在不确定磨损增量状态数量的前提下采用狄利克雷混合模型对特征自动分类,然后利用吉布斯采样方法确定模型参数,最终得到描述力信号特征与磨损增量映射关系的刀具磨损状态混合模型。根据该混合模型以及当前的力信号信息即可完成刀具磨损量的在线估计。真实应用案例证明了该方法能自适应学习磨损状态并有效估计刀具的连续磨损值。 展开更多
关键词 刀具健康状态监测 刀具磨损 狄利克雷混合模型 吉布斯采样
在线阅读 下载PDF
视频图像处理在输电线路安防系统的应用 被引量:14
17
作者 张烨 黄新波 +3 位作者 李菊清 张慧莹 刘新慧 邢晓强 《广东电力》 2016年第5期102-107,共6页
介绍了一种基于视频图像差异化分析的输电线路安防系统。图像采集模块通过摄像机捕获和监视场景的光学图像,经模数转换输出数字视频图像,为视频图像处理提供数据。后台专家软件通过调用视频差异化算法对采集的图像进行分析处理,利用边... 介绍了一种基于视频图像差异化分析的输电线路安防系统。图像采集模块通过摄像机捕获和监视场景的光学图像,经模数转换输出数字视频图像,为视频图像处理提供数据。后台专家软件通过调用视频差异化算法对采集的图像进行分析处理,利用边缘检测、特征提取、背景建模、目标跟踪和背景差分等图像处理和模式识别的方法,自动识别出输电线路的多种安全隐患,如大型机械靠近作业、飘撞物、导线覆冰、大风天气产生的导线舞动以及在高负荷状态时出现的弧垂等,并产生预警信号。实验结果表明算法可在多种室外环境下工作,满足实际应用的要求。最后指出复杂环境下的输电线路图像识别算法是进一步研究的方向。 展开更多
关键词 安防系统 视频图像处理 边缘检测 混合高斯模型 运动目标跟踪法
在线阅读 下载PDF
基于全局最优的快速一致性点漂移算法 被引量:7
18
作者 赵键 孙即祥 +2 位作者 周石琳 李智勇 王亮亮 《电子与信息学报》 EI CSCD 北大核心 2012年第3期509-516,共8页
目前受到广泛关注和研究的一致性点漂移(CPD)算法是一种基于高斯混合模型的点模式匹配算法,虽然该算法具有较强的鲁棒性,但其存在局部最优性和收敛速度随点集大小增加而下降等问题。针对上述问题,该文提出了一种新的基于全局最优的快速... 目前受到广泛关注和研究的一致性点漂移(CPD)算法是一种基于高斯混合模型的点模式匹配算法,虽然该算法具有较强的鲁棒性,但其存在局部最优性和收敛速度随点集大小增加而下降等问题。针对上述问题,该文提出了一种新的基于全局最优的快速一致性点漂移算法。该算法首先将点集进行正交标准形约简,利用约简后点集的重要性质,推导出不完全观测数据的对数似然函数在全局最优解附近凸函数区域的边界值,再以该边界值为基础,采用多重初始化策略来实现全局最优。最后,提出了基于置信域的全局收敛二次平方迭代期望最大化算法,实现了全局优化算法的超线性收敛。模拟仿真与真实数据实验验证了该文算法是有效的、快速的以及鲁棒性较强的。 展开更多
关键词 图像处理 一致性点漂移 点模式匹配 高斯混合模型 全局最优
在线阅读 下载PDF
基于数据关联狄利克雷混合模型的电网净负荷不确定性表征研究 被引量:7
19
作者 李远征 孙天乐 +2 位作者 刘云 赵勇 曾志刚 《自动化学报》 EI CAS CSCD 北大核心 2022年第3期747-761,共15页
针对电网净负荷时序数据关联的特点,提出基于数据关联的狄利克雷混合模型(Data-relevance Dirichlet process mixture model,DDPMM)来表征净负荷的不确定性.首先,使用狄利克雷混合模型对净负荷的观测数据与预测数据进行拟合,得到其混合... 针对电网净负荷时序数据关联的特点,提出基于数据关联的狄利克雷混合模型(Data-relevance Dirichlet process mixture model,DDPMM)来表征净负荷的不确定性.首先,使用狄利克雷混合模型对净负荷的观测数据与预测数据进行拟合,得到其混合概率模型;然后,提出考虑数据关联的变分贝叶斯推断方法,改进后验分布对该混合概率模型进行求解,从而得到混合模型的最优参数;最后,根据净负荷预测值的大小得到其对应的预测误差边缘概率分布,实现不确定性表征.本文基于比利时电网的净负荷数据进行检验,算例结果表明:与传统的狄利克雷混合模型和高斯混合模型(Gaussian mixture model,GMM)等方法相比,所提出的基于数据关联狄利克雷混合模型可以更为有效地表征净负荷的不确定性. 展开更多
关键词 狄利克雷混合模型 净负荷 不确定性表征 时序序列 预测误差
在线阅读 下载PDF
面向动态主题数的话题演化分析 被引量:6
20
作者 方莹 黄河燕 +2 位作者 辛欣 魏骁驰 庄琨 《中文信息学报》 CSCD 北大核心 2014年第3期142-149,共8页
话题演化用于自动分析话题变化趋势,具有较高的应用和研究价值。ILDA(Infinite Latent Dirichlet Allocation)模型在LDA(Latent Dirichlet Allocation)模型的基础上增加了狄利克雷过程,除了能获取隐变量,更重要的是能完成超参的动态更... 话题演化用于自动分析话题变化趋势,具有较高的应用和研究价值。ILDA(Infinite Latent Dirichlet Allocation)模型在LDA(Latent Dirichlet Allocation)模型的基础上增加了狄利克雷过程,除了能获取隐变量,更重要的是能完成超参的动态更新和主题数的变动。而已有的话题演化研究中,话题的主题数需要事先指定且无法变动,基于ILDA模型的方法则可以针对性地解决该问题。构建的话题演化分析系统可实现如下功能:各周期内按不同主题分类、相邻周期间的主题进行关联、按时间顺序计算子话题强度。实验显示,基于ILDA模型的参数动态更新符合实际需求,话题演化分析过程完善可行。 展开更多
关键词 主题模型 无参混合模型 狄利克雷过程 话题演化
在线阅读 下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部