A series of as-synthesized HZSM-5 zeolites with different Si/Al ratios(25,90,120,240 and 400)were post-treated by ultrasonication for an optimum time of 60 min.The morphology,acidity and textural properties of HZSM-5 ...A series of as-synthesized HZSM-5 zeolites with different Si/Al ratios(25,90,120,240 and 400)were post-treated by ultrasonication for an optimum time of 60 min.The morphology,acidity and textural properties of HZSM-5 were characterized with XRD,SEM,N_2 adsorption and NH3-TPD techniques.The catalytic performance was evaluated by dehydration of methanol to dimethyl ether(DME),which is a promising gaseous automotive fuel in future.It was found that the Si/Al ratio of HZSM-5 had considerable impacts on its catalytic performance for dehydration of methanol to DME.Its activity increased with decreasing Si/Al ratio from 400 to 25.Ultrasonication of HZSM-5 could significantly improve its catalytic performance.展开更多
Hydrogen was produced from partial oxidation reforming of DME (dimethyl ether) by spark discharge plasma at atmospheric pressure. A plasma-catalyst reformer was designed. A series of experiments were carried out to ...Hydrogen was produced from partial oxidation reforming of DME (dimethyl ether) by spark discharge plasma at atmospheric pressure. A plasma-catalyst reformer was designed. A series of experiments were carried out to investigate its performance of hydrogen-rich gas production. The effects of reaction temperature, catalyst and flow rate on gas concentrations (volume fraction), hydrogen yield, DME conversion ratio, specific energy consumption and thermal efficiency were investigated, respectively. The experimental results show that hydrogen concentration and the flow rate of produced H2 are improved when temperature increases from 300 ℃ to 700 ℃. Hydrogen yield, hydrogen concentration and the flow rate of produced H2 are substantially improved in the use of Fe-based catalyst at high temperature. Moreover, hydrogen yield and thermal efficiency are improved and change slightly when flow rate increases. When catalyst is 12 g, and flow rate increases from 35 mL/min to 210 mL/min, hydrogen yield decreases from 66.4% to 57.7%, and thermal efficiency decreases from 35.6% to 30.9%. It is anticipated that the results would serve as a good guideline to the application of hydrogen generation from hydrocarbon fuels by plasma reforming onboard.展开更多
In this work,hydrogen is produced from partial oxidation reforming of dimethyl ether (DME) by a plasma-catalyst hybrid reformer under atmospheric pressure.The plasma-catalyst hybrid reformer which includes both plas...In this work,hydrogen is produced from partial oxidation reforming of dimethyl ether (DME) by a plasma-catalyst hybrid reformer under atmospheric pressure.The plasma-catalyst hybrid reformer which includes both plasma and catalyst reactors is designed.A spark discharge is used as a non-equilibrium plasma source,and it is used to ionize the mixture of DME and air.The performances of the reformer are characterized experimentally in terms of gas concentrations,hydrogen yield,DME conversion ratio,and specific energy consumption.The effects of discharge frequency,reaction temperature,air-to-DME ratio and space velocity are investigated.The experimental results show that the plasma-catalyst hybrid reformer enhances hydrogen yield when reaction temperature drops below 620 ℃.At 450 ℃,hydrogen yield of hybrid reforming is almost three times that of catalyst reforming.When space velocity is 510 h-1,hydrogen yield is 67.7%,and specific energy consumption is 12.2 k J/L-H2.展开更多
文摘A series of as-synthesized HZSM-5 zeolites with different Si/Al ratios(25,90,120,240 and 400)were post-treated by ultrasonication for an optimum time of 60 min.The morphology,acidity and textural properties of HZSM-5 were characterized with XRD,SEM,N_2 adsorption and NH3-TPD techniques.The catalytic performance was evaluated by dehydration of methanol to dimethyl ether(DME),which is a promising gaseous automotive fuel in future.It was found that the Si/Al ratio of HZSM-5 had considerable impacts on its catalytic performance for dehydration of methanol to DME.Its activity increased with decreasing Si/Al ratio from 400 to 25.Ultrasonication of HZSM-5 could significantly improve its catalytic performance.
基金Project(21106002)supported by the National Natural Science Foundation of ChinaProject(2010DFA72760)supported by the Collaboration on Cutting-Edge Technology Development of Electric Vehicle,China
文摘Hydrogen was produced from partial oxidation reforming of DME (dimethyl ether) by spark discharge plasma at atmospheric pressure. A plasma-catalyst reformer was designed. A series of experiments were carried out to investigate its performance of hydrogen-rich gas production. The effects of reaction temperature, catalyst and flow rate on gas concentrations (volume fraction), hydrogen yield, DME conversion ratio, specific energy consumption and thermal efficiency were investigated, respectively. The experimental results show that hydrogen concentration and the flow rate of produced H2 are improved when temperature increases from 300 ℃ to 700 ℃. Hydrogen yield, hydrogen concentration and the flow rate of produced H2 are substantially improved in the use of Fe-based catalyst at high temperature. Moreover, hydrogen yield and thermal efficiency are improved and change slightly when flow rate increases. When catalyst is 12 g, and flow rate increases from 35 mL/min to 210 mL/min, hydrogen yield decreases from 66.4% to 57.7%, and thermal efficiency decreases from 35.6% to 30.9%. It is anticipated that the results would serve as a good guideline to the application of hydrogen generation from hydrocarbon fuels by plasma reforming onboard.
基金Project(21106002)supported by the National Natural Science Foundation of ChinaProject(2010DFA72760)supported by Collaboration on Cutting-Edge Technology Development of Electric Vehicle,China
文摘In this work,hydrogen is produced from partial oxidation reforming of dimethyl ether (DME) by a plasma-catalyst hybrid reformer under atmospheric pressure.The plasma-catalyst hybrid reformer which includes both plasma and catalyst reactors is designed.A spark discharge is used as a non-equilibrium plasma source,and it is used to ionize the mixture of DME and air.The performances of the reformer are characterized experimentally in terms of gas concentrations,hydrogen yield,DME conversion ratio,and specific energy consumption.The effects of discharge frequency,reaction temperature,air-to-DME ratio and space velocity are investigated.The experimental results show that the plasma-catalyst hybrid reformer enhances hydrogen yield when reaction temperature drops below 620 ℃.At 450 ℃,hydrogen yield of hybrid reforming is almost three times that of catalyst reforming.When space velocity is 510 h-1,hydrogen yield is 67.7%,and specific energy consumption is 12.2 k J/L-H2.