Research on dual-fuel(DF)engines has become increasingly important as engine manufacturers seek to reduce carbon dioxide emissions.There are significant advantages of using diesel pilot-ignited natural gas engines as ...Research on dual-fuel(DF)engines has become increasingly important as engine manufacturers seek to reduce carbon dioxide emissions.There are significant advantages of using diesel pilot-ignited natural gas engines as DF engines.However,different combustion modes exist due to variations in the formation of the mixture.This research used a simulation model and numerical simulations to explore the combustion characteristics of high-pressure direct injection(HPDI),partially premixed compression ignition(PPCI),and double pilot injection premixed compression ignition(DPPCI)combustion modes under a low-medium load.The results revealed that the DPPCI combustion mode provides higher gross indicated thermal efficiency and more acceptable total hydrocarbon(THC)emission levels than the other modes.Due to its relatively good performance,an experimental study was conducted on the DPPCI mode engine to evaluate the impact of the diesel dual-injection strategy on the combustion process.In the DPPCI mode,a delay in the second pilot ignition injection time increased THC emissions(a maximum value of 4.27g/(kW·h)),decreased the emission of nitrogen oxides(a maximum value of 7.64 g/(kW·h)),increased and then subsequently decreased the gross indicated thermal efficiency values,which reached 50.4%under low-medium loads.展开更多
Diesel engines meeting the latest emission regulations must be equipped with exhaust gas aftertreatment system,including diesel oxidation catalysts(DOC),diesel particulate filters(DPF),and selective catalytic reductio...Diesel engines meeting the latest emission regulations must be equipped with exhaust gas aftertreatment system,including diesel oxidation catalysts(DOC),diesel particulate filters(DPF),and selective catalytic reduction(SCR).However,before the final integration of the aftertreatment system(DOC+DPF+SCR)and the diesel engine,a reasonable structural optimization of the catalytic converters and a large number of bench calibration tests must be completed,involving large costs and long development cycles.The design and optimization of the exhaust gas aftertreatment system for a heavy-duty diesel engine was proposed in this paper.Firstly,one-dimensional(1D)and threedimensional(3D)computational models of the exhaust gas aftertreatment system accounting for the structural parameters of the catalytic converters were established.Then based on the calibrated models,the effects of the converter’s structural parameters on their main performance indicators,including the conversion of various exhaust pollutants and the temperatures and pressure drops of the converters,were studied.Finally,the optimal design scheme was obtained.The temperature distribution of the solid substrates and pressure distributions of the catalytic converters were studied based on the 3D model.The method proposed in this paper has guiding significance for the optimization of diesel engine aftertreatment systems.展开更多
Based on the analysis of the high temperature decomposition of oxydal(H2O2)and the combustion of diesel engine,the effects of H2O2 on the improvement of diesel combustion were studied.An oxydal spray system was design...Based on the analysis of the high temperature decomposition of oxydal(H2O2)and the combustion of diesel engine,the effects of H2O2 on the improvement of diesel combustion were studied.An oxydal spray system was designed to inject H2O2/water mixture into the manifold.The experiment was carried out on a 1135 diesel engine bench.The results show that H2O2 injection can make the curve of heat release rate move forward and decrease its peak value.The specific fuel consumption is decreased a little,while both NOx and PM emission are obviously reduced.展开更多
In order to solve the failure of fuel system when using petroleum coke oil slurry (PCOS) in a R180 diesel engine directly,a petroleum coke oil slurry fuel system (PCOSFS) was developed and installed in R180 engine,whi...In order to solve the failure of fuel system when using petroleum coke oil slurry (PCOS) in a R180 diesel engine directly,a petroleum coke oil slurry fuel system (PCOSFS) was developed and installed in R180 engine,which was called PCOS engine.In order to analyze performances and emissions of the PCOS engine,a comparative experiment between PCOS engine fueled with PCOS and R180 engine fueled with diesel oil was carried out.The results show that the PCOS engine can run smoothly,the maximum output power decreases by about 6.2% and 19.0% and the maximum brake thermal efficiency reduces by around 5.85% and 4.13% as compared to R180 engine under the conditions of 1 200 and 1 600 r/min.The HC emissions of PCOS engine are lower than those of R180 engine at 1 200 r/min,and are close to those of R180 engine at 1 600 r/min.The CO emissions are similar to R180 engine at 1 200 and 1 600 r/min.The smoke intensity is close to R180 engine at 1 200 r/min,and is higher than R180 engine at 1 600 r/min.The particles emitted from PCOS engine array sparsely,but particles emitted from R180 engine array closely,cohering together.展开更多
针对柴油发动机推进特性下的中高负荷工况出现的NO_(x)排放峰值现象,以及燃油价格日益上涨带来降低油耗率的迫切需求,本研究通过调节柴油/甲醇组合燃烧(diesel/methanol compound combustion,DMCC)发动机多种控制参数,在保证动力性前提...针对柴油发动机推进特性下的中高负荷工况出现的NO_(x)排放峰值现象,以及燃油价格日益上涨带来降低油耗率的迫切需求,本研究通过调节柴油/甲醇组合燃烧(diesel/methanol compound combustion,DMCC)发动机多种控制参数,在保证动力性前提下,实现NO_(x)排放和有效燃油消耗率(brake specific fuel consumption,BSFC)的同步下降。为避免大规模试验带来的成本增加,首先基于高斯过程回归建立DMCC发动机排放的NO_(x)体积分数、BSFC和指示功率预测模型;然后将所建模型与第二代非支配排序遗传算法(non-dominated sorting genetic algorithm-Ⅱ,NSGA-Ⅱ)结合,对NO_(x)的体积分数和BSFC进行优化,并将Pareto前沿解集代入逼近理想解排序法(the technique for order preference by similarity to an ideal solution,TOPSIS)寻找最优控制参数组合;最后将最优控制参数组合标定至电子控制单元,与原机数据进行对比分析。结果表明:基于高斯过程回归建立的预测模型的拟合优度大于0.95,均方根误差小于1,具有良好的一致性和准确性;使用NSGA-Ⅱ获取的最佳控制参数与优化前(原机工况)的相比,NO_(x)的排放量下降74.5%,仅为3.47 g/(kW·h),BSFC平均下降6.7%,仅为203.5 g/(kW·h)。展开更多
基金Project(2017YFE0102800)supported by the National Key R&D Program of ChinaProject(19JCYBJC21200)supported by the Tianjin Natural Science Foundation,China。
文摘Research on dual-fuel(DF)engines has become increasingly important as engine manufacturers seek to reduce carbon dioxide emissions.There are significant advantages of using diesel pilot-ignited natural gas engines as DF engines.However,different combustion modes exist due to variations in the formation of the mixture.This research used a simulation model and numerical simulations to explore the combustion characteristics of high-pressure direct injection(HPDI),partially premixed compression ignition(PPCI),and double pilot injection premixed compression ignition(DPPCI)combustion modes under a low-medium load.The results revealed that the DPPCI combustion mode provides higher gross indicated thermal efficiency and more acceptable total hydrocarbon(THC)emission levels than the other modes.Due to its relatively good performance,an experimental study was conducted on the DPPCI mode engine to evaluate the impact of the diesel dual-injection strategy on the combustion process.In the DPPCI mode,a delay in the second pilot ignition injection time increased THC emissions(a maximum value of 4.27g/(kW·h)),decreased the emission of nitrogen oxides(a maximum value of 7.64 g/(kW·h)),increased and then subsequently decreased the gross indicated thermal efficiency values,which reached 50.4%under low-medium loads.
基金Projects(2017YFC0211202,2017YFC0211301)supported by the National Key R&D Program of China。
文摘Diesel engines meeting the latest emission regulations must be equipped with exhaust gas aftertreatment system,including diesel oxidation catalysts(DOC),diesel particulate filters(DPF),and selective catalytic reduction(SCR).However,before the final integration of the aftertreatment system(DOC+DPF+SCR)and the diesel engine,a reasonable structural optimization of the catalytic converters and a large number of bench calibration tests must be completed,involving large costs and long development cycles.The design and optimization of the exhaust gas aftertreatment system for a heavy-duty diesel engine was proposed in this paper.Firstly,one-dimensional(1D)and threedimensional(3D)computational models of the exhaust gas aftertreatment system accounting for the structural parameters of the catalytic converters were established.Then based on the calibrated models,the effects of the converter’s structural parameters on their main performance indicators,including the conversion of various exhaust pollutants and the temperatures and pressure drops of the converters,were studied.Finally,the optimal design scheme was obtained.The temperature distribution of the solid substrates and pressure distributions of the catalytic converters were studied based on the 3D model.The method proposed in this paper has guiding significance for the optimization of diesel engine aftertreatment systems.
文摘Based on the analysis of the high temperature decomposition of oxydal(H2O2)and the combustion of diesel engine,the effects of H2O2 on the improvement of diesel combustion were studied.An oxydal spray system was designed to inject H2O2/water mixture into the manifold.The experiment was carried out on a 1135 diesel engine bench.The results show that H2O2 injection can make the curve of heat release rate move forward and decrease its peak value.The specific fuel consumption is decreased a little,while both NOx and PM emission are obviously reduced.
基金Project(2007BAA09B05)supported by the National Key Technology Research and Development Program of ChinaProject(50804004)supported by the National Natural Science Foundation of China
文摘In order to solve the failure of fuel system when using petroleum coke oil slurry (PCOS) in a R180 diesel engine directly,a petroleum coke oil slurry fuel system (PCOSFS) was developed and installed in R180 engine,which was called PCOS engine.In order to analyze performances and emissions of the PCOS engine,a comparative experiment between PCOS engine fueled with PCOS and R180 engine fueled with diesel oil was carried out.The results show that the PCOS engine can run smoothly,the maximum output power decreases by about 6.2% and 19.0% and the maximum brake thermal efficiency reduces by around 5.85% and 4.13% as compared to R180 engine under the conditions of 1 200 and 1 600 r/min.The HC emissions of PCOS engine are lower than those of R180 engine at 1 200 r/min,and are close to those of R180 engine at 1 600 r/min.The CO emissions are similar to R180 engine at 1 200 and 1 600 r/min.The smoke intensity is close to R180 engine at 1 200 r/min,and is higher than R180 engine at 1 600 r/min.The particles emitted from PCOS engine array sparsely,but particles emitted from R180 engine array closely,cohering together.
文摘针对柴油发动机推进特性下的中高负荷工况出现的NO_(x)排放峰值现象,以及燃油价格日益上涨带来降低油耗率的迫切需求,本研究通过调节柴油/甲醇组合燃烧(diesel/methanol compound combustion,DMCC)发动机多种控制参数,在保证动力性前提下,实现NO_(x)排放和有效燃油消耗率(brake specific fuel consumption,BSFC)的同步下降。为避免大规模试验带来的成本增加,首先基于高斯过程回归建立DMCC发动机排放的NO_(x)体积分数、BSFC和指示功率预测模型;然后将所建模型与第二代非支配排序遗传算法(non-dominated sorting genetic algorithm-Ⅱ,NSGA-Ⅱ)结合,对NO_(x)的体积分数和BSFC进行优化,并将Pareto前沿解集代入逼近理想解排序法(the technique for order preference by similarity to an ideal solution,TOPSIS)寻找最优控制参数组合;最后将最优控制参数组合标定至电子控制单元,与原机数据进行对比分析。结果表明:基于高斯过程回归建立的预测模型的拟合优度大于0.95,均方根误差小于1,具有良好的一致性和准确性;使用NSGA-Ⅱ获取的最佳控制参数与优化前(原机工况)的相比,NO_(x)的排放量下降74.5%,仅为3.47 g/(kW·h),BSFC平均下降6.7%,仅为203.5 g/(kW·h)。