期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Clustering algorithm based on density function and nichePSO 被引量:4
1
作者 Chonghui Guo Yunhui Zang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2012年第3期445-452,共8页
This paper introduces niching particle swarm optimiza- tion (nichePSO) into clustering analysis and puts forward a cluster- ing algorithm which uses nichePSO to optimize density functions. Firstly, this paper improv... This paper introduces niching particle swarm optimiza- tion (nichePSO) into clustering analysis and puts forward a cluster- ing algorithm which uses nichePSO to optimize density functions. Firstly, this paper improves main swarm training models and in- creases their ability of space searching. Secondly, the radius of sub-swarms is defined adaptively according to the actual clus- tering problem, which can be useful for the niches' forming and searching. At last, a novel method that distributes samples to the corresponding cluster is proposed. Numerical results illustrate that this algorithm based on the density function and nichePSO could cluster unbalanced density datasets into the correct clusters auto- matically and accurately. 展开更多
关键词 niching particle swarm optimization (nichePSO) density-based clustering automatic clustering.
在线阅读 下载PDF
基于改进DBSCAN和距离共识评估的分段点云去噪方法 被引量:6
2
作者 葛程鹏 赵东 +1 位作者 王蕊 马庆华 《系统仿真学报》 CAS CSCD 北大核心 2024年第8期1800-1809,共10页
针对点云数据中噪声点的剔除问题,提出了一种基于改进DBSCAN(density-based spatial clustering of applications with noise)算法的多尺度点云去噪方法。应用统计滤波对孤立离群点进行预筛选,去除点云中的大尺度噪声;对DBSCAN算法进行... 针对点云数据中噪声点的剔除问题,提出了一种基于改进DBSCAN(density-based spatial clustering of applications with noise)算法的多尺度点云去噪方法。应用统计滤波对孤立离群点进行预筛选,去除点云中的大尺度噪声;对DBSCAN算法进行优化,减少算法时间复杂度和实现参数的自适应调整,以此将点云分为正常簇、疑似簇及异常簇,并立即去除异常簇;利用距离共识评估法对疑似簇进行精细判定,通过计算疑似点与其最近的正常点拟合表面之间的距离,判定其是否为异常,有效保持了数据的关键特征和模型敏感度。利用该方法对两个船体分段点云进行去噪,并与其他去噪算法进行对比,结果表明,该方法在去噪效率和特征保持方面具有优势,精确地保留了点云数据的几何特性。 展开更多
关键词 点云去噪 点云数据 DBSCAN(density-based spatial clustering of applications with noise)聚类 距离共识评估 特征保持
在线阅读 下载PDF
基于DBSCAN算法的郑洛地区史前聚落遗址聚类分析 被引量:10
3
作者 毕硕本 计晗 杨鸿儒 《科学技术与工程》 北大核心 2014年第32期266-270,共5页
为了解决判别聚落群过于依赖考古专家人工划分的问题,以郑洛地区新石器时代聚落遗址为例,采用基于密度的DBSCAN(density-based spatial clustering of applications with noise)算法对聚落遗址进行空间聚类研究。通过对郑洛地区四个文... 为了解决判别聚落群过于依赖考古专家人工划分的问题,以郑洛地区新石器时代聚落遗址为例,采用基于密度的DBSCAN(density-based spatial clustering of applications with noise)算法对聚落遗址进行空间聚类研究。通过对郑洛地区四个文化时期聚落遗址的分布分析,发现郑洛地区的主体聚落群从研究区东部的嵩山以南地区,转移到郑洛地区中部的伊洛河流域,并且在伊洛河流域长期定居下来,不断发展扩大;大型聚落遗址主要分布在主体聚落群里,除了裴李岗文化时期部分大型聚落较孤立;从仰韶文化后期到龙山文化时期,聚落遗址分布呈主从式环状分布格局;大多数聚落群的走向都和河流分布一致。研究表明,利用DBSCAN算法进行聚落遗址聚类是可行的,通过聚类得到郑洛地区新石器时代四个文化时期聚落遗址的分布特征。 展开更多
关键词 郑洛地区 聚落遗址 聚类 density-based spatial clustering of applications with noise(DBSCAN)
在线阅读 下载PDF
Over-sampling algorithm for imbalanced data classification 被引量:13
4
作者 XU Xiaolong CHEN Wen SUN Yanfei 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2019年第6期1182-1191,共10页
For imbalanced datasets, the focus of classification is to identify samples of the minority class. The performance of current data mining algorithms is not good enough for processing imbalanced datasets. The synthetic... For imbalanced datasets, the focus of classification is to identify samples of the minority class. The performance of current data mining algorithms is not good enough for processing imbalanced datasets. The synthetic minority over-sampling technique(SMOTE) is specifically designed for learning from imbalanced datasets, generating synthetic minority class examples by interpolating between minority class examples nearby. However, the SMOTE encounters the overgeneralization problem. The densitybased spatial clustering of applications with noise(DBSCAN) is not rigorous when dealing with the samples near the borderline.We optimize the DBSCAN algorithm for this problem to make clustering more reasonable. This paper integrates the optimized DBSCAN and SMOTE, and proposes a density-based synthetic minority over-sampling technique(DSMOTE). First, the optimized DBSCAN is used to divide the samples of the minority class into three groups, including core samples, borderline samples and noise samples, and then the noise samples of minority class is removed to synthesize more effective samples. In order to make full use of the information of core samples and borderline samples,different strategies are used to over-sample core samples and borderline samples. Experiments show that DSMOTE can achieve better results compared with SMOTE and Borderline-SMOTE in terms of precision, recall and F-value. 展开更多
关键词 imbalanced data density-based spatial clustering of applications with noise(DBSCAN) synthetic minority over sampling technique(SMOTE) over-sampling.
在线阅读 下载PDF
Automatic fuzzy-DBSCAN algorithm for morphological and overlapping datasets 被引量:5
5
作者 YELGHI Aref KÖSE Cemal +1 位作者 YELGHI Asef SHAHKAR Amir 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2020年第6期1245-1253,共9页
Clustering is one of the unsupervised learning problems.It is a procedure which partitions data objects into groups.Many algorithms could not overcome the problems of morphology,overlapping and the large number of clu... Clustering is one of the unsupervised learning problems.It is a procedure which partitions data objects into groups.Many algorithms could not overcome the problems of morphology,overlapping and the large number of clusters at the same time.Many scientific communities have used the clustering algorithm from the perspective of density,which is one of the best methods in clustering.This study proposes a density-based spatial clustering of applications with noise(DBSCAN)algorithm based on the selected high-density areas by automatic fuzzy-DBSCAN(AFD)which works with the initialization of two parameters.AFD,by using fuzzy and DBSCAN features,is modeled by the selection of high-density areas and generates two parameters for merging and separating automatically.The two generated parameters provide a state of sub-cluster rules in the Cartesian coordinate system for the dataset.The model overcomes the problems of clustering such as morphology,overlapping,and the number of clusters in a dataset simultaneously.In the experiments,all algorithms are performed on eight data sets with 30 times of running.Three of them are related to overlapping real datasets and the rest are morphologic and synthetic datasets.It is demonstrated that the AFD algorithm outperforms other recently developed clustering algorithms. 展开更多
关键词 clustering density-based spatial clustering of applications with noise(DBSCAN) FUZZY OVERLAPPING data mining
在线阅读 下载PDF
Estimating model for urban carrying capacity on bike-sharing 被引量:1
6
作者 YU Jia-jie JI Yan-jie +1 位作者 YI Chen-yu LIU Yang 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第6期1775-1785,共11页
As the demand for bike-sharing has been increasing,the oversupply problem of bike-sharing has occurred,which leads to the waste of resources and disturbance of the urban environment.In order to regulate the supply vol... As the demand for bike-sharing has been increasing,the oversupply problem of bike-sharing has occurred,which leads to the waste of resources and disturbance of the urban environment.In order to regulate the supply volume of bike-sharing reasonably,an estimating model was proposed to quantify the urban carrying capacity(UCC)for bike-sharing through the demand data.In this way,the maximum supply volume of bike-sharing that a city can accommodate can be obtained.The UCC on bike-sharing is reflected in the road network carrying capacity(RNCC)and parking facilities’carrying capacity(PFCC).The space-time consumption method and density-based spatial clustering of application with noise(DBSCAN)algorithm were used to explore the RNCC and PFCC for bike-sharing.Combined with the users’demand,the urban load ratio on bike-sharing can be evaluated to judge whether the UCC can meet users’demand,so that the supply volume of bike-sharing and distribution of the related facilities can be adjusted accordingly.The application of the model was carried out by estimating the UCC and load ratio of each traffic analysis zone in Nanjing,China.Compared with the field survey data,the effect of the proposed algorithm was verified. 展开更多
关键词 bike-sharing urban carrying capacity space-time consumption method density-based spatial clustering of application with noise(DBSCAN)algorithm
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部