利用传统二维多重信号分类(multiple signal classification,MUSIC)算法进行二维波达方向(direction of arrival,DOA)估计时,往往带来巨大的运算量,限制了算法的实际应用。提出了一种能够大大降低二维DOA估计运算量的模值约束降维MUSIC...利用传统二维多重信号分类(multiple signal classification,MUSIC)算法进行二维波达方向(direction of arrival,DOA)估计时,往往带来巨大的运算量,限制了算法的实际应用。提出了一种能够大大降低二维DOA估计运算量的模值约束降维MUSIC算法,该算法将二维DOA估计问题转化为优化方程的求解问题,并采用模值约束法定义附加条件,使方向向量得到了较强约束,进而使求解结果更加接近最优解。理论分析和仿真实验表明,本文算法所需运算量较低,且角度估计的成功率与精确度较高。展开更多
多重信号分类(Multiple Signal Classification,MUSIC)算法是波达方向(Direction of Arrival,DOA)估计领域中的经典算法之一,但其谱峰搜索过程的巨大计算量降低了算法的实时性。经典进化算法虽能降低搜索时间,却仅能搜索到一个解,当存...多重信号分类(Multiple Signal Classification,MUSIC)算法是波达方向(Direction of Arrival,DOA)估计领域中的经典算法之一,但其谱峰搜索过程的巨大计算量降低了算法的实时性。经典进化算法虽能降低搜索时间,却仅能搜索到一个解,当存在多个入射信号时便无法搜索全部解。为了解决该问题,在粒子群算法的基础上,借鉴小生境思想提出了小生境粒子群算法,利用顺序聚类算法将粒子划分到不同的小生境,并根据小生境的迭代数选择不同搜索策略,兼顾了搜索广度和深度。仿真结果表明,改进粒子群算法在进行多谱峰搜索时能大幅降低搜索时间并搜索到全部解,与同类算法相比具有更高的精度和较少设置参数,其精度可以达到10^(-3),用时可以达到网格搜索的1/7000,在基于MUSIC算法的多个信号DOA估计中有重要的应用价值。展开更多
In order to resolve direction finding problems in the impulse noise,a direction of arrival(DOA)estimation method is proposed.The proposed DOA estimation method can restrain the impulse noise by using infinite norm exp...In order to resolve direction finding problems in the impulse noise,a direction of arrival(DOA)estimation method is proposed.The proposed DOA estimation method can restrain the impulse noise by using infinite norm exponential kernel covariance matrix and obtain excellent performance via the maximumlikelihood(ML)algorithm.In order to obtain the global optimal solutions of this method,a quantum electromagnetic field optimization(QEFO)algorithm is designed.In view of the QEFO algorithm,the proposed method can resolve the difficulties of DOA estimation in the impulse noise.Comparing with some traditional DOA estimation methods,the proposed DOA estimation method shows high superiority and robustness for determining the DOA of independent and coherent sources,which has been verified via the Monte-Carlo experiments of different schemes,especially in the case of snapshot deficiency,low generalized signal to noise ratio(GSNR)and strong impulse noise.Beyond that,the Cramer-Rao bound(CRB)of angle estimation in the impulse noise and the proof of the convergence of the QEFO algorithm are provided in this paper.展开更多
文摘利用传统二维多重信号分类(multiple signal classification,MUSIC)算法进行二维波达方向(direction of arrival,DOA)估计时,往往带来巨大的运算量,限制了算法的实际应用。提出了一种能够大大降低二维DOA估计运算量的模值约束降维MUSIC算法,该算法将二维DOA估计问题转化为优化方程的求解问题,并采用模值约束法定义附加条件,使方向向量得到了较强约束,进而使求解结果更加接近最优解。理论分析和仿真实验表明,本文算法所需运算量较低,且角度估计的成功率与精确度较高。
文摘多重信号分类(Multiple Signal Classification,MUSIC)算法是波达方向(Direction of Arrival,DOA)估计领域中的经典算法之一,但其谱峰搜索过程的巨大计算量降低了算法的实时性。经典进化算法虽能降低搜索时间,却仅能搜索到一个解,当存在多个入射信号时便无法搜索全部解。为了解决该问题,在粒子群算法的基础上,借鉴小生境思想提出了小生境粒子群算法,利用顺序聚类算法将粒子划分到不同的小生境,并根据小生境的迭代数选择不同搜索策略,兼顾了搜索广度和深度。仿真结果表明,改进粒子群算法在进行多谱峰搜索时能大幅降低搜索时间并搜索到全部解,与同类算法相比具有更高的精度和较少设置参数,其精度可以达到10^(-3),用时可以达到网格搜索的1/7000,在基于MUSIC算法的多个信号DOA估计中有重要的应用价值。
基金supported by the National Natural Science Foundation of China(61571149)the Natural Science Foundation of Heilongjiang Province(LH2020F017)+1 种基金the Initiation Fund for Postdoctoral Research in Heilongjiang Province(LBH-Q19098)the Heilongjiang Province Key Laboratory of High Accuracy Satellite Navigation and Marine Application Laboratory(HKL-2020-Y01).
文摘In order to resolve direction finding problems in the impulse noise,a direction of arrival(DOA)estimation method is proposed.The proposed DOA estimation method can restrain the impulse noise by using infinite norm exponential kernel covariance matrix and obtain excellent performance via the maximumlikelihood(ML)algorithm.In order to obtain the global optimal solutions of this method,a quantum electromagnetic field optimization(QEFO)algorithm is designed.In view of the QEFO algorithm,the proposed method can resolve the difficulties of DOA estimation in the impulse noise.Comparing with some traditional DOA estimation methods,the proposed DOA estimation method shows high superiority and robustness for determining the DOA of independent and coherent sources,which has been verified via the Monte-Carlo experiments of different schemes,especially in the case of snapshot deficiency,low generalized signal to noise ratio(GSNR)and strong impulse noise.Beyond that,the Cramer-Rao bound(CRB)of angle estimation in the impulse noise and the proof of the convergence of the QEFO algorithm are provided in this paper.