期刊文献+

模值约束的降维MUSIC二维DOA估计 被引量:6

Two-dimensional DOA estimation with reduced-dimensional MUSIC algorithm using the modulus constraint
在线阅读 下载PDF
导出
摘要 利用传统二维多重信号分类(multiple signal classification,MUSIC)算法进行二维波达方向(direction of arrival,DOA)估计时,往往带来巨大的运算量,限制了算法的实际应用。提出了一种能够大大降低二维DOA估计运算量的模值约束降维MUSIC算法,该算法将二维DOA估计问题转化为优化方程的求解问题,并采用模值约束法定义附加条件,使方向向量得到了较强约束,进而使求解结果更加接近最优解。理论分析和仿真实验表明,本文算法所需运算量较低,且角度估计的成功率与精确度较高。 A large amount of computation is required when using the traditional two-dimensional multiple signal classification (2D-MUSIC)algorithm for two-dimensional direction of arrival (DOA)estimation,so the practical application of 2D-MUSIC algorithm is limited.A reduced-dimensional MUSIC algorithm using the modulus constraint to solve the computation-intensive problem in two-dimensional DOA estimation is proposed. The proposed algorithm can distinctly reduce the computational load,because the two-dimensional DOA estima-tion can be decomposed into two stages of one-dimensional DOA estimation by the quadratic optimization meth-od.In this algorithm,the modulus constraint is used to construct the constraint condition of the quadratic opti-mization function,and the steering vectors are strongly constrained in the solving process,so the result is closer to the optimal solution than the other’s.The theoretical analysis and simulation results show that the proposed algorithm not only requires less computation,but also performs well in success rate and precision of angle esti-mation.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2014年第9期1681-1686,共6页 Systems Engineering and Electronics
基金 国家自然科学基金(61271300 61072107) 中央高校基本科研业务费专项资金(K5051202003)资助课题
关键词 二维波达方向估计 降维多重信号分类法 优化算法 模值约束 two-dimensional direction of arrival (DOA) reduced-dimensional multiple signal classification(RD-MUSIC) optimization algorithm modulus constraint
作者简介 蔡晶晶(1981-),女,讲师,博士研究生,主要研究方向为阵列信号处理、信息对抗。E—mail:jjcai@mail.xidian.edu.cn 秦国栋(1979-),男,讲师,博士,主要研究方向为阵列信号处理、雷达目标检测技术。Email:gdqin@mail.xidian.edu.cn 李鹏(1965-),男,教授,硕士,主要研究方向为雷达对抗、信息对抗。E—mail:pli@mail.xidian.edu.cn 赵国庆(1953-),男,教授,硕士,主要研究方向为雷达对抗、信息对抗。E—mail:guoqzhao@mail.xidian.edu.cn
  • 相关文献

参考文献16

  • 1Belouehrani A, Amin M G. Time-frequency MUSIC[J]. IEEE Signal Processing Letters, 1999,6(5): 109 - 110.
  • 2Chandran S, Ibrahim K. DOA estimation of wide-band signals based on time-frequency analysis[J]. IEEE Journal of Oceanic Engineering, 1999,24(1) :116 - 121.
  • 3Schmidt R O. Multiple emitter location and signal parameter estimation [J]. IEEE Trans. on Antennas and Propagation, 1986,34(3) :278 - 280.
  • 4Ray R, Kailath T. ESPRIT-estimation of signal parameters via rotational invariance techniques[J]. IEEE Trans. on Acoustics, Speech, Signal Process, 1989,37 (7): 984 - 995.
  • 5Liang J L, Liu D. Joint elevation and azimuth direction finding using L-shaped array[J]. IEEE Trans. on Antennas and Propa- gation,2010,58(6) :2136 - 2141.
  • 6王伟,马跃华,李欣.基于相位差的均匀圆阵DOA估计新方法[J].系统工程与电子技术,2012,34(10):1994-1998. 被引量:4
  • 7Bu H W, Hon T H, Mook S L. Decoupled 2D direction of arri- val estimation using compact uniform circular arrays in the pres- ence of elevation-dependent mutual coupling[J]. IEEE Trans.on Antennas and Propagation, 2010,58(3): 747 - 755.
  • 8Hung C J, Chen C H. New algorithm for fast direction-of-arrival estimation using the shrinking signal subspace and the noise pseudo-eigenvector [J]. IET Radar, Sonar & Navigation, 2010,4(4): 604 - 610.
  • 9Zhang Y, Ye Z, Xu X, et al. Estimation of two-dimensional direction-of arrival for uncorrelated and coherent signals with low complexity[J]. IET Radar, Sonar & Navigation, 2010,4(4) : 507 - 519.
  • 10Zhang X, Xu D. Angle estimation in MIMO radar using re- duced-dimension Capon[J]. Electronics Letters, 2010,46 (12): 860 - 861.

二级参考文献32

  • 1唐忠礼,武思军,张曙.基于均匀圆阵的二维DOA估计的新算法[J].哈尔滨工程大学学报,2005,26(2):247-251. 被引量:5
  • 2郭跃,王宏远,周陬.阵元间距对MUSIC算法的影响[J].电子学报,2007,35(9):1675-1679. 被引量:28
  • 3Kay S M.统计信号处理基础[M].罗鹏飞,张文明,刘忠等译.北京:电子工业出版社,2006.473-479.
  • 4Loannides P, Balanis C A. Uniform circular arrays for smart an-tennas[J]. IEEE Anlennas and Propagalions Magazine, 2005, 47(4):192-208.
  • 5Ko Y H, Kim Y J, Yoo H I, et al. 2 D DoA estimation with cell searching for a mobile relay station with uniform circular array[J]. IEEE Trans, on Communications, 2010,58(10) : 2805 - 2809.
  • 6Ertin E, Moses R L, Potter L C. Interfero-metric methods for threm dimensional target reconstruction with multipass circular SAR[J]. IETRadar Sonar and Navigation ,2010,4(3) : 464 - 473.
  • 7Mathews C P, Zoltowski M D. Eigenstru-cture techniques for 2-D angle estimation with uniform circular arrays[J]. IEEE Trans. on Signal Processing,1994,42(9) : 2395 - 2407.
  • 8Goossens R, Rogier H, Werbrouek S. UCA root-MUSIC with sparse uniform circular arrays[J]. IEEE Trans. on Signal Pro cessing, 2008,56 (8) : 4095 - 4099.
  • 9Fu T, Jin S, Gao X Q. Joint 2 - D angle and frequency estima tion for uniform circular array[C]//Proc, of the International Conference on Communications, Circuits and Systems Proceed ings, 2006:230 - 233.
  • 10Yang K, ZhaoZ, YangW, et al. Direction of arrival oncylindri cal conformal array using RARE[J]. Journal of Systems Engi neering and Electronics, 2006,17(5) : 767 - 772.

共引文献24

同被引文献54

  • 1郑洪,肖先赐.MUSIC算法在高速并行处理机上的实现[J].电子科技大学学报,2005,34(6):759-762. 被引量:4
  • 2庄钊文.极化敏感阵列信号处理[M].北京:国防工业出版社,2006: 204-209.
  • 3Kim J M, Lee O K, Ye J C. Compressive MUSIC= revisiting the link between compressive sensing and array signal processing[J]. IEEE Trans.on Information T[:eory, 2012, 58(1)= 278-301.
  • 4Naida P S. Sensor array signal processing :M:. Florida: CRC Press, 2010.
  • 5Zhang Y D, Amin M G, Himed B. Sparsity-based DOA estima- tion using co-prime arrays[C://Proc, of the IEEE InternationalConference on Acoustics, Speech and Signal Processing, 2013 : 3967 - 3971.
  • 6Liu Z, Ruan X, He J. Efficient 2-D DOA estimation for coherent sources with a sparse acoustic vector-sensor array[J]. Multidimen- sional Systems : Signal Processing, 2013, 24(1) : 105 - 120.
  • 7Bencheikh M L, Wang Y. Joint DOD-DOA estimation using corn- bined ESPRIT-MUSIC approach in MIMO radar[J]. Electronics Letters, 2010, 46(15): 1081-1083.
  • 8Zoltowski M D, Haardt M, Mathews C P. Closed-form 2-D angle estimation with rectangular arrays in element space or beamspace via unitary ESPRIT [J]. IEEE Trans. on Signal Processing, 1996, 44(2):316-328.
  • 9Marcos S, Marsal A, Benidir M. The propagator method for source bearing estimation [J]. Signal Processing, 1995, 42 (2) : 121 - 138.
  • 10Wu Y, Liao G, So H C. A fast algorithm for 2-D direction-of-arri- val estimationFJ:. Sigr:l Processing, 2003, 83(8) : 1827 - 1831.

引证文献6

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部