期刊文献+
共找到566篇文章
< 1 2 29 >
每页显示 20 50 100
融合改进堆叠编码器和多层BiLSTM的入侵检测模型 被引量:3
1
作者 陈虹 姜朝议 +2 位作者 金海波 武聪 卢健波 《计算机工程与应用》 北大核心 2025年第3期306-314,共9页
针对基于机器学习入侵检测模型需要大量特征工程,且对不平衡数据处理欠佳,导致检测率低、误报率高等问题。构建了一种SE-MBL的入侵检测模型。采用自适应合成采样(ADASYN)方法对少数类样本进行样本扩展,解决数据不平衡问题,形成相对对称... 针对基于机器学习入侵检测模型需要大量特征工程,且对不平衡数据处理欠佳,导致检测率低、误报率高等问题。构建了一种SE-MBL的入侵检测模型。采用自适应合成采样(ADASYN)方法对少数类样本进行样本扩展,解决数据不平衡问题,形成相对对称的数据集。采用改进的堆叠自编码器进行数据降维,消除特征冗余,并引入Dropout机制来增强信息融合,提升模型的泛化能力。提出一种融合一维CNN和多层BiLSTM的模块,分别提取空间特征和时间特征,以提高模型的分类性能。在NSL-KDD和CICIDS2017数据集上的实验结果表明,该模型可以实现较高的正确率和召回率,优于传统机器学习和深度学习方法。 展开更多
关键词 网络安全 入侵检测 数据不平衡 数据降维 多层bilstm
在线阅读 下载PDF
基于情绪词典和BERT-BiLSTM的股指预测研究 被引量:3
2
作者 张少军 苏长利 《计算机工程与应用》 北大核心 2025年第4期358-367,共10页
股票市场的不确定性和复杂性使得股票预测成为一项具有挑战性的任务。鉴于金融文本在股票预测中的潜在价值,采用词典法和BERT双向长短期记忆模型(bidirectional encoder representations from transformers-bidirectional long short-te... 股票市场的不确定性和复杂性使得股票预测成为一项具有挑战性的任务。鉴于金融文本在股票预测中的潜在价值,采用词典法和BERT双向长短期记忆模型(bidirectional encoder representations from transformers-bidirectional long short-term memory,BERT-BiLSTM)对在线财经新闻提取情感特征,构建了融合情感特征和股票交易特征的股指预测模型。实验对比了融合情感特征前后模型的预测能力,并探讨了不同模型、不同时间周期下预测能力的差异。实验结果表明,融合词典法和深度学习技术提取的情感特征均能提升各模型股指预测的准确率。LSTM模型相较其他实验模型在融合情感特征前后的股指预测上均表现较好。进一步的时间跨度分析表明,股指预测模型在较短的时间跨度上对股票指数涨跌的预测能力更强。为验证股指预测模型的实际价值,对沪深300指数的牛熊市和震荡市进行回测分析,结合LSTM模型和深度Q网络(deep Q-network,DQN)原理,对比了传统均线策略以及结合DQN强化学习算法后股指回测差异。回测结果表明,相比于单一的传统交易策略,结合传统交易策略和深度学习方法的股票指数预测模型在牛熊市及震荡市中均保证了正的夏普比例和累积收益率,并有效控制了最大回撤,显示出更强的市场适应性和盈利能力。 展开更多
关键词 财经新闻情感特征 股指预测 bilstm模型 DQN强化学习
在线阅读 下载PDF
基于CNN-BiLSTM的ICMPv6 DDoS攻击检测方法
3
作者 王春兰 郭峰 +2 位作者 刘晋州 王明华 韩宝安 《火力与指挥控制》 北大核心 2025年第4期71-78,84,共9页
针对ICMPv6网络中DDoS攻击检测问题,提出一种基于CNN-BiLSTM网络的检测算法。通过将带有注意力机制、DropConnect和Dropout混合使用加入到CNN-BiLSTM算法中,防止在训练过程中产生过拟合问题,同时更准确提取数据的特性数据。通过实验表明... 针对ICMPv6网络中DDoS攻击检测问题,提出一种基于CNN-BiLSTM网络的检测算法。通过将带有注意力机制、DropConnect和Dropout混合使用加入到CNN-BiLSTM算法中,防止在训练过程中产生过拟合问题,同时更准确提取数据的特性数据。通过实验表明:提出的算法在多次实验中的检测准确率、误报率与漏报率平均值分别为92.84%、4.49%和10.54%,检测算法泛化性较强,性能优于其他算法,能够有效处理ICMPv6 DDoS攻击检测问题。 展开更多
关键词 分布式拒绝服务攻击 攻击检测 ICMPV6 CNN bilstm
在线阅读 下载PDF
基于注意力机制的CNN-BiLSTM过闸流量预测模型
4
作者 何立新 沈正华 +1 位作者 张峥 雷晓辉 《水电能源科学》 北大核心 2025年第5期135-138,共4页
在明渠调水工程中,精确掌握过闸流量对于提升渠道调控效率、保障输水系统安全等问题意义重大。为提高过闸流量预测精度,提出一种基于注意力机制,融合卷积神经网络(CNN)和双向长短期记忆网络(BiLSTM)的过闸流量预测模型。以洺河渡槽节制... 在明渠调水工程中,精确掌握过闸流量对于提升渠道调控效率、保障输水系统安全等问题意义重大。为提高过闸流量预测精度,提出一种基于注意力机制,融合卷积神经网络(CNN)和双向长短期记忆网络(BiLSTM)的过闸流量预测模型。以洺河渡槽节制闸为例,选取其1年时间尺度的实际数据为模型输入,模型首先将输入数据标准化,再利用CNN提取特征信息,经过BiLSTM捕获序列数据中的前后向依赖关系,最后通过注意力机制评估信息的重要程度,对特征参数进行加权处理,实现对过闸流量的预测。结果表明,所建模型相比于传统的BP-NN、SVR、LSTM等预测模型具有更好的预测结果,模型的平均绝对误差、平均绝对百分比误差、均方根误差和决定系数分别为3.682、0.018、4.661、0.983,可为工程实践提供参考。 展开更多
关键词 过闸流量预测 bilstm 注意力机制 神经网络
在线阅读 下载PDF
基于KOA-BiLSTM的矿井淋水井筒风温预测模型及可解释性分析
5
作者 秦跃平 唐飞 +3 位作者 王海蓉 王鹏 郭铭彦 王世斌 《中国安全科学学报》 北大核心 2025年第7期40-47,共8页
为提高矿井淋水井筒风温预测的准确性、稳定性及模型的可解释性,首先,通过皮尔逊相关性系数分析特征变量;其次,采用开普勒优化算法(KOA)优化双向长短期记忆网络(BiLSTM)模型,建立基于KOA-BiLSTM的矿井淋水井筒风温预测模型;然后,在相同... 为提高矿井淋水井筒风温预测的准确性、稳定性及模型的可解释性,首先,通过皮尔逊相关性系数分析特征变量;其次,采用开普勒优化算法(KOA)优化双向长短期记忆网络(BiLSTM)模型,建立基于KOA-BiLSTM的矿井淋水井筒风温预测模型;然后,在相同样本条件下,与反向传播(BP)、随机森林(RF)、最小二乘增强(LSBoost)和支持向量机(SVM)算法进行综合对比;最后,利用沙普利可加性特征解释算法(SHAP)进行可解释性分析及实例验证。研究结果表明:KOA-BiLSTM模型的绝对误差范围为-1.24~0.5℃,比优化前模型的预测精度提高3.98%;与另外4个模型相比,该模型的平均绝对误差(MAE)、平均绝对百分比误差(MAPE)和均方误差(MSE)等均为最佳,表明该模型具有最优的预测效果和泛化能力;SHAP分析表明:井口风流温度对预测结果影响最大,而地面压力影响最小;KOA-BiLSTM模型实例验证的绝对误差范围为-0.49~0.38℃,预测精度可满足实际工作需要。 展开更多
关键词 开普勒优化算法(KOA)-双向长短期记忆网络(bilstm)模型 淋水井筒 风温预测模型 可解释性分析 皮尔逊相关性
在线阅读 下载PDF
基于主题条件CNN-BiLSTM的旋律自动生成方法
6
作者 曹西征 张航 李伟 《河南师范大学学报(自然科学版)》 北大核心 2025年第3期135-142,共8页
为了有效地生成结构化的旋律,提出了一种基于主题条件CNN-BiLSTM的旋律自动生成方法.将旋律表示为钢琴卷帘窗的形式,使用定长、变长相结合的方法分割钢琴卷帘窗;通过Ward聚类算法对钢琴卷帘窗片段进行聚类分析,将获取的最大簇作为歌曲... 为了有效地生成结构化的旋律,提出了一种基于主题条件CNN-BiLSTM的旋律自动生成方法.将旋律表示为钢琴卷帘窗的形式,使用定长、变长相结合的方法分割钢琴卷帘窗;通过Ward聚类算法对钢琴卷帘窗片段进行聚类分析,将获取的最大簇作为歌曲的旋律主题;以旋律主题作为条件使用基于CNN-BiLSTM结构的模型进行旋律生成,其上半部分CNN可以有效地提取钢琴卷帘窗中所包含时间和音高之间的信息,下半部分利用LSTM和BiLSTM更好地捕捉到序列中的时序信息.结果表明,相较于现有的MidiNet模型,使用的旋律主题条件CNN-BiLSTM模型在准确率、归一化KL散度方面分别高出23%和0.17,生成的乐曲在连贯性和情感表达方面也优于传统的模型. 展开更多
关键词 音乐生成 自动作曲 CNN-bilstm 旋律主题提取 聚类
在线阅读 下载PDF
基于贝叶斯优化的CNN-BiLSTM-Attention的煤体结构识别方法
7
作者 边会媛 姬嘉骏 +3 位作者 段朝伟 周军 李坤 马予梒 《煤田地质与勘探》 北大核心 2025年第11期34-43,共10页
【背景】含煤盆地在多期构造变形作用下形成原生煤与构造煤,孔裂隙发育情况、渗透性与力学性能的不同导致煤层含气性差异大,煤体结构评价对煤层气的勘探开发至关重要。【目的和方法】为提高煤体结构识别的准确性与智能化水平,构建了一... 【背景】含煤盆地在多期构造变形作用下形成原生煤与构造煤,孔裂隙发育情况、渗透性与力学性能的不同导致煤层含气性差异大,煤体结构评价对煤层气的勘探开发至关重要。【目的和方法】为提高煤体结构识别的准确性与智能化水平,构建了一种融合贝叶斯优化策略的CNN-BiLSTMAttention混合模型。该方法结合卷积神经网络(convolutional neural network,CNN)的局部特征提取、双向长短期记忆网络(bidirection long short-term memory,BiLSTM)的时序建模和注意力机制(Attention)的特征聚焦能力,实现了多尺度测井数据的高效融合与表征。同时,采用贝叶斯优化自动调参,增强模型稳定性与训练效率。以鄂尔多斯盆地山西组与本溪组煤层为研究对象,基于常规测井数据,经过标准化处理、异常值剔除及缺失值插补,结合岩心资料构建了原生煤、原生−碎裂煤及碎裂煤的数据集,并采用交叉熵损失函数对模型进行训练与评估。【结果和结论】CNN-BiLSTM-Attention混合模型的准确率为95.12%,优于单一模型BiLSTM和CNN,各类煤体结构的精确率与召回率均超过93%,混淆矩阵显示误差分布均匀。在X2井中应用,混合模型在不同煤体结构过渡段表现出更高的一致性与判别力,显著减少了原生–碎裂煤与碎裂煤的错判。模型对测井数据的噪声具有良好鲁棒性,为煤层气精细评价提供了稳定可靠的技术支撑。 展开更多
关键词 煤体结构 深度学习 CNN-bilstm-Attention 贝叶斯优化 测井数据
在线阅读 下载PDF
融合BiLSTM与CNN的推特黑灰产分类模型 被引量:3
8
作者 朱恩德 王威 高见 《计算机工程与应用》 北大核心 2025年第1期186-195,共10页
当前推特等国外社交平台,已成为从事网络黑灰产犯罪不可或缺的工具,对推特上黑灰产账号进行发现、检测和分类对于打击网络犯罪、维护社会稳定具有重大意义。现有的推文分类模型双向长短时记忆网络(bi-directional long short-term memor... 当前推特等国外社交平台,已成为从事网络黑灰产犯罪不可或缺的工具,对推特上黑灰产账号进行发现、检测和分类对于打击网络犯罪、维护社会稳定具有重大意义。现有的推文分类模型双向长短时记忆网络(bi-directional long short-term memory,BiLSTM)可以学习推文的上下文信息,却无法学习局部关键信息,卷积神经网络(convolution neural network,CNN)模型可以学习推文的局部关键信息,却无法学习推文的上下文信息。结合BiLSTM与CNN两种模型的优势,提出了BiLSTM-CNN推文分类模型,该模型将推文进行向量化后,输入BiLSTM模型学习推文的上下文信息,再在BiLSTM模型后引入CNN层,进行局部特征的提取,最后使用全连接层将经过池化的特征连接在一起,并应用softmax函数进行四分类。模型在自主构建的中文推特黑灰产推文数据集上进行实验,并使用TextCNN、TextRNN、TextRCNN三种分类模型作为对比实验,实验结果显示,所提的BiLSTM-CNN推文分类模型在对四类推文进行分类的宏准确率为98.32%,明显高于TextCNN、TextRNN和TextRCNN三种模型的准确率。 展开更多
关键词 文本分类 双向长短期记忆网络(bilstm) 卷积神经网络(CNN) 黑灰产 推特
在线阅读 下载PDF
基于特征选择与BiLSTM多变量回归预测的磨煤机故障预警研究 被引量:3
9
作者 罗云 李战国 +5 位作者 付陇霞 王道谊 张新中 李耀华 程亮 江霞 《动力工程学报》 北大核心 2025年第5期724-732,共9页
为解决火电设备多参数耦合、渐变性故障诊断困难的问题,提出了一种基于套索(LASSO)回归特征选择与双向长短期记忆(BiLSTM)网络多变量回归预测的故障预警方法。以某1 000 MW机组磨煤机为研究对象,选取磨煤机电流、出口压力、出入口差压... 为解决火电设备多参数耦合、渐变性故障诊断困难的问题,提出了一种基于套索(LASSO)回归特征选择与双向长短期记忆(BiLSTM)网络多变量回归预测的故障预警方法。以某1 000 MW机组磨煤机为研究对象,选取磨煤机电流、出口压力、出入口差压作为表征堵磨故障的特征参数,采用LASSO回归选择特征变量,基于BiLSTM算法建立多变量回归预测模型;根据堵磨时特征参数的变化机理与模型预测值构建堵磨故障指数,最后利用核密度估计方法计算预警阈值,实现了堵磨故障预警。通过实际数据分析表明:磨煤机正常状态时,BiLSTM多变量回归预测模型的平均相对误差为1.13%,相比传统的误差反向传播(BP)神经网络和支持向量机回归(SVR)模型具有更高的精度和预测参数变化趋势的能力;磨煤机异常状态时,相比成熟的多元状态估计技术(MSET)算法模型能更早地发现磨煤机运行的异常状态,实现磨煤机变工况下故障早期预警。 展开更多
关键词 磨煤机 LASSO回归 bilstm多变量回归 预测模型 堵磨 故障指数
在线阅读 下载PDF
基于CEEMDAN-IGWO-CNN-BiLSTM模型的锂电池剩余寿命预测 被引量:1
10
作者 王旭 胡明茂 +6 位作者 宫爱红 龚青山 黄正寅 姜宇 李帅雨 姚政豪 陈锐 《电源技术》 北大核心 2025年第5期991-1005,共15页
针对大规模电池老化数据有限或缺失等问题,提出了一种融合自适应噪声的完全集合经验模态分解、改进灰狼优化算法、卷积神经网络和双向长短期记忆神经网络(CEEMDAN-IGWO-CNN-BiLSTM)的混合预测模型。由于传统的灰狼优化算法(GWO)易陷入... 针对大规模电池老化数据有限或缺失等问题,提出了一种融合自适应噪声的完全集合经验模态分解、改进灰狼优化算法、卷积神经网络和双向长短期记忆神经网络(CEEMDAN-IGWO-CNN-BiLSTM)的混合预测模型。由于传统的灰狼优化算法(GWO)易陷入局部最优且收敛速度较慢,因此在GWO的基础上引入了Tent混沌映射、基于维度学习的狩猎策略和Taguchi方法,对GWO进行多策略改进。利用CEEMDAN将电池容量数据分解为本征模态分量和残差分量;利用CNN提取数据特征,并将其输入经过IGWO寻找到最优参数的BiLSTM中进行预测;采用公共数据集进行验证并与其他模型进行对比,均方根误差和平均绝对误差分别降低了17%和30%,决定系数提高了4%。证明了本模型具有良好的精度和泛化能力。 展开更多
关键词 锂离子电池 IGWO CEEMDAN bilstm 剩余使用寿命预测
在线阅读 下载PDF
GWO优化CNN-BiLSTM-Attenion的轴承剩余寿命预测方法 被引量:6
11
作者 李敬一 苏翔 《振动与冲击》 北大核心 2025年第2期321-332,共12页
滚动轴承作为机械设备的重要部件,对其进行剩余使用寿命预测在企业的生产过程中变得越来越重要。目前,虽然主流的卷积神经网络(convolutional neural network, CNN)可以自动地从轴承的振动信号中提取特征,却不能给特征分配不同的权重来... 滚动轴承作为机械设备的重要部件,对其进行剩余使用寿命预测在企业的生产过程中变得越来越重要。目前,虽然主流的卷积神经网络(convolutional neural network, CNN)可以自动地从轴承的振动信号中提取特征,却不能给特征分配不同的权重来提高模型对重要特征的关注程度,对于长时间序列容易丢失重要信息。另外,神经网络中隐藏层神经元个数、学习率以及正则化参数等超参数还需要依靠人工经验设置。为了解决上述问题,提出基于灰狼优化(grey wolf optimizer, GWO)算法、优化集合CNN、双向长短期记忆(bidirectional long short term memory, BiLSTM)网络和注意力机制(Attention)轴承剩余使用寿命预测方法。首先,从原始振动信号中提取时域、频域以及时频域特征指标构建可选特征集;然后,通过构建考虑特征相关性、鲁棒性和单调性的综合评价指标筛选出高于设定阈值的轴承退化敏感特征集,作为预测模型的输入;最后,将预测值和真实值的均方误差作为GWO算法的适应度函数,优化预测模型获得最优隐藏层神经元个数、学习率和正则化参数,利用优化后模型进行剩余使用寿命预测,并在公开数据集上进行验证。结果表明,所提方法可在非经验指导下获得最优的超参数组合,优化后的预测模型与未进行优化模型相比,平均绝对误差与均方根误差分别降低了28.8%和24.3%。 展开更多
关键词 灰狼优化(GWO)算法 卷积神经网络(CNN) 双向长短期记忆(bilstm)网络 自注意力机制 剩余使用寿命预测
在线阅读 下载PDF
基于IMVMD和BiLSTM-SARIMA组合模型的台区光伏短期发电功率预测 被引量:1
12
作者 李承皓 杨永标 +2 位作者 宋嘉启 张翔颖 徐青山 《太阳能学报》 北大核心 2025年第2期433-440,共8页
针对台区分布式光伏短期发电功率预测精度低的难题,提出一种基于增强型鲸鱼优化算法的多元变分模态分解方法,并结合反向传播神经网络耦合双向长短期记忆网络和季节性差分自回归滑动平均的组合模型,实现台区分布式光伏短期发电功率预测... 针对台区分布式光伏短期发电功率预测精度低的难题,提出一种基于增强型鲸鱼优化算法的多元变分模态分解方法,并结合反向传播神经网络耦合双向长短期记忆网络和季节性差分自回归滑动平均的组合模型,实现台区分布式光伏短期发电功率预测。首先对鲸鱼优化算法的收敛因子、权重等进行改进,然后用它去优化多元变分模态分解方法中的通道数量和惩罚因子,得到最佳分解效果的参数值。再针对与外界气象等因素强相关的光伏发电功率时间序列数据,利用改进多元模态分解将序列最优分解。将分解后的各模态分量输入到单独构建的双向长短期记忆网络和季节性差分自回归滑动平均模型中,获取分量预测值,两个模型得到的分量预测值分别叠加得到各自的完整预测结果。将它们分别乘以权重后相加即为最终预测结果,权重通过反向传播神经网络进行修正。仿真结果说明相比于其他方法,所提模型能有效提高光伏短期发电的预测精度。 展开更多
关键词 模态分解 神经网络 光伏发电 预测 bilstm SARIMA
在线阅读 下载PDF
基于注意力机制CNN-BiLSTM的磨煤机故障预警方法 被引量:1
13
作者 王远鑫 陈鸿伟 +2 位作者 杨新 申赫男 钟凯 《华北电力大学学报(自然科学版)》 北大核心 2025年第4期134-142,共9页
磨煤机是火电机组的重要辅机之一,其运行状态对机组的稳定出力和安全运行发挥着重要影响,所以研究故障预警方法可以有效降低磨煤机的故障停机概率,提升机组的整体可靠性。结合多种深度学习方法的优势,提出了基于注意力机制的卷积神经网... 磨煤机是火电机组的重要辅机之一,其运行状态对机组的稳定出力和安全运行发挥着重要影响,所以研究故障预警方法可以有效降低磨煤机的故障停机概率,提升机组的整体可靠性。结合多种深度学习方法的优势,提出了基于注意力机制的卷积神经网络-双向长短期记忆神经网络(CNN-BiLSTM)的故障预警方法。通过CNN学习数据的空间特征,通过BiLSTM学习数据的时间特征,最后通过注意力机制为提取到的时空特征根据重要度分配不同的权重,增强重要特征在计算过程中的作用,从而提升模型的预测性能。使用某660 MW火电机组的磨煤机运行数据进行验证,结果表明所提方法在正常阶段相比对比方法具有更高的预测精度,在故障阶段预测残差的上升趋势更加明显。为了进一步提升故障预警效果,引入相对熵指标对残差进行处理,实验结果表明相对熵指标解决了残差控制图的缺点,有效提升了故障预警效果和预警时间。所提方法提前33 min预警了磨煤机轴承故障。 展开更多
关键词 磨煤机 故障预警 注意力机制 CNN bilstm
在线阅读 下载PDF
基于EA-BiLSTM-SCSO的多步逐小时参考作物蒸腾量预测方法 被引量:1
14
作者 谢伟明 张钟莉莉 +3 位作者 陶建平 曲明山 魏一博 张石锐 《节水灌溉》 北大核心 2025年第3期57-63,70,共8页
在农业水资源管理领域,参考作物蒸腾量的精确预测对灌溉水高效利用至关重要。当前逐日预测方法未能充分利用日内动态变化信息,限制了预测准确性。为解决该问题,研究提出了一种基于外部注意力机制(EA)的双向长短时记忆网络(BiLSTM)模型,... 在农业水资源管理领域,参考作物蒸腾量的精确预测对灌溉水高效利用至关重要。当前逐日预测方法未能充分利用日内动态变化信息,限制了预测准确性。为解决该问题,研究提出了一种基于外部注意力机制(EA)的双向长短时记忆网络(BiLSTM)模型,使用沙猫群算法(SCSO)优化模型超参数,实现逐小时参考作物蒸腾量预测。首先利用SCSO方法对EA-BiLSTM模型进行优化,优化后的算法在70个epoch后收敛,平均R^(2)升至0.750;进而通过特征相关性分析,将模型输入的特征数据由10个减少为历史ET0、太阳辐射、空气温度、空气湿度和最大风速5个。以北京市昌平区的国家精准农业研究示范基地大田种植区ET0预测为例进行了方法验证,在对未来第7小时的预测中,R^(2)从0.619提高到0.644,获得了更好的预测效果;最后通过对模型可解释性分析证实,历史ET0对预测的贡献最高,贡献率达到了0.043,其次是空气湿度和总辐射。与DT(决策树)、Lasso(最小绝对收缩和选择算法)、LMP(多层感知机)、CNN(卷积神经网络)等预测方法的对比结果表明,采用EA-BiLSTM-SCSO的预测结果在MAE和MSE指标上均获得了最低的误差值,在R^(2)指标上,EA-BiLSTM-SCSO模型平均达到0.722较CNN模型提升了12.6%。研究验证了深度学习与特征工程在提高作物参考蒸腾量逐小时预测精度方面的优势。该方法在智慧灌溉中用于估算作物的水分需求,能够实现对未来灌溉的精准预测,从而制定合理的灌溉计划,提高灌溉水利用效率,进行有效的灌溉用水调度。 展开更多
关键词 bilstm 外部注意力机制 沙猫群优化算法 逐小时参考作物蒸腾量预测 模型可解释性
在线阅读 下载PDF
基于卷积残差BiLSTM网络的层理缝定量表征方法
15
作者 圣学礼 胡慧婷 +3 位作者 付晓飞 王海学 钱诗友 孙雅雄 《石油地球物理勘探》 北大核心 2025年第5期1099-1110,共12页
层理缝在致密砂岩储层和页岩储层中普遍存在,其作为油气的储集空间及渗流通道,对油气富集和开采效率等影响显著。传统层理缝预测方法受限于地震、测井资料质量以及实钻井数量,且在准确率及效率上存在一定局限性。近年来,深度学习技术在... 层理缝在致密砂岩储层和页岩储层中普遍存在,其作为油气的储集空间及渗流通道,对油气富集和开采效率等影响显著。传统层理缝预测方法受限于地震、测井资料质量以及实钻井数量,且在准确率及效率上存在一定局限性。近年来,深度学习技术在裂缝识别和预测中得到广泛应用,但随着模型复杂度的增加,梯度异常及性能退化等问题也愈加明显,且常用模型不能充分适应序列型地震和测井数据。为此,提出了一种基于卷积残差双向长短期记忆神经网络(BiLSTM)的层理缝预测新方法。首先,在研究区内均匀部署伪井以解决实钻井数量不足、难以全面覆盖研究区域的问题,并结合岩心观察数据,提取多种具有层理缝统计信息的实钻井及伪井的井旁地震属性,建立训练样本和实际预测数据集;其次,通过样本扩充和预处理相关技术手段解决样本质量问题;最终,利用卷积神经网络进行样本特征提取,并建立卷积残差连接将数据传输至具“门控”机制的BiLSTM网络内进行信息的选择遗忘,有效缓解了深层网络中出现的梯度异常、性能退化等问题,显著提高了模型预测精度,决定系数可达91.3%。苏北盆地M地区层理缝预测结果表明,该方法可以较为高效、精准地预测层理缝发育情况,且预测结果与地质认识相符。该方法为现场油气勘探提供了有效支撑与指导。 展开更多
关键词 层理缝 卷积残差 bilstm 地震属性 伪井 苏北盆地
在线阅读 下载PDF
基于SCSSA-BiLSTM的卧式加工中心主轴热误差预测建模
16
作者 赵添翼 汤赫男 +3 位作者 柏爽 周冉 徐方超 孙凤 《机床与液压》 北大核心 2025年第20期30-35,共6页
为进一步提升传统麻雀搜索算法的预测精度,针对某卧式加工中心主轴的热误差补偿问题,建立BiLSTM预测模型并引入麻雀搜索算法(SSA)与正余弦和柯西变异策略(SC)对模型进行优化。利用五点法测试多转速下主轴温度与热误差数据。以温升数据... 为进一步提升传统麻雀搜索算法的预测精度,针对某卧式加工中心主轴的热误差补偿问题,建立BiLSTM预测模型并引入麻雀搜索算法(SSA)与正余弦和柯西变异策略(SC)对模型进行优化。利用五点法测试多转速下主轴温度与热误差数据。以温升数据为输入,预测主轴热误差。结果表明:随着主轴转速提升,主轴温升与轴向热误差变化更加剧烈,各轴承位置温升变化趋势基本相同;径向热误差较小,且影响因素较多,因此误差补偿应主要考虑Z向热伸长。与SSA-BiLSTM模型、BiLSTM模型相比,优化后的SCSSA-BiLSTM模型预测拟合度最好,精度最高。在多工况下,SCSSA-BiLSTM模型的各项指标均高于其他两种模型且提升明显,证明其具有良好的泛化能力,为多工况下的热误差预测补偿提供了参考。 展开更多
关键词 主轴 热误差建模 bilstm神经网络 麻雀搜索算法 泛化能力
在线阅读 下载PDF
基于IBWO-CNN-BiLSTM-Attention的机床刀具磨损预测模型
17
作者 崔业梅 杨焕峥 +1 位作者 薛洪惠 徐玲 《机床与液压》 北大核心 2025年第8期72-78,共7页
为了提高机床刀具磨损预测的准确性,对优化算法进行改进,设计人工智能模型,并利用PHM2010刀具磨损数据集进行验证。构建一种基于IBWO-CNN-BiLSTM-Attention的预测模型,采用卷积神经网络(CNN)和双向长短时记忆网络(BiLSTM)学习数据的空... 为了提高机床刀具磨损预测的准确性,对优化算法进行改进,设计人工智能模型,并利用PHM2010刀具磨损数据集进行验证。构建一种基于IBWO-CNN-BiLSTM-Attention的预测模型,采用卷积神经网络(CNN)和双向长短时记忆网络(BiLSTM)学习数据的空间和时间特征,引入注意力机制(Attention)提高模型对关键信息的关注度。提出一种改进的白鲸优化算法(IBWO)优化模型参数和迭代次数,结合种群混沌映射初始化、准反向学习和萤火虫扰动策略,经CEC2005函数测试,该算法收敛速度和寻优精度明显优于传统BWO等对比算法。将该模型与CNN-BiLSTM-Attention模型、BWO-CNN-BiLSTM-Attention模型进行对比。结果表明:该模型在机床刀具磨损预测方面具有更高的准确性和可靠性。最后,在STM32H7单片机设备中部署了“剪枝”模型,并验证了“剪枝”模型在嵌入式设备中运行的可行性。 展开更多
关键词 机床刀具 磨损预测 改进的白鲸优化算法(IBWO) 双向长短时记忆网络(bilstm) 卷积神经网络(CNN)
在线阅读 下载PDF
改进GJO优化CNN-BiLSTM的热负荷预测模型 被引量:6
18
作者 白宇 薛贵军 +1 位作者 谢文举 史彩娟 《中国测试》 北大核心 2025年第4期82-90,共9页
合理规划好集中供热一次网的供热负荷,对满足热用户的舒适度和减少能源消耗有着重要意义。为此提出一种改进金豺算法(improved golden jackal optimization,IGJO)优化的CNN-BiLSTM热负荷预测模型。综合考虑一次网各项参数和天气因素的影... 合理规划好集中供热一次网的供热负荷,对满足热用户的舒适度和减少能源消耗有着重要意义。为此提出一种改进金豺算法(improved golden jackal optimization,IGJO)优化的CNN-BiLSTM热负荷预测模型。综合考虑一次网各项参数和天气因素的影响,将热负荷历史值和一次网供水温度、供水流量、供水压力、外界天气温度组成CNN-BiLSTM网络的输入,利用CNN-BiLSTM网络提取输入数据的空间特征和时间特征。同时,通过Circle混沌映射、螺旋波动搜索、自适应t变异策略改进GJO,得到的IGJO有效解决了GJO全局搜索能力弱和收敛精度不高的问题,具有高效的寻优效果,然后利用IGJO寻优CNN-BiLSTM网络的超参数,解决了因CNN-BiLSTM网络的超参数选取不当而影响热负荷预测结果的问题。最后利用吉林延边某换热站2021年1月到3月供热负荷数据进行模型测试。结果表明,所提IGJO-CNN-BiLSTM预测结果的MAE、MAPE、RMSE和NSE分别为0.005 MW、0.33%、0.008 MW和0.97,相比LSTM、CNN-LSTM等模型,具有更优的预测精度。 展开更多
关键词 供热负荷预测 一次网 改进金豺优化算法 CNN-bilstm网络 超参数寻优 预测精度
在线阅读 下载PDF
基于改进经验模态分解与BiLSTM神经网络的低矮房屋脉动风压时程预测 被引量:1
19
作者 邱冶 袁有明 伞冰冰 《湖南大学学报(自然科学版)》 北大核心 2025年第3期82-93,共12页
为解决风压测量中传感器数据间歇性缺失问题,提出基于改进经验模态分解算法(IEMD)和双向长短期记忆网络(BiLSTM)的结构表面风压时程预测方法.首先,采用基于软筛分停止准则的改进经验模态分解方法,将风压时程自适应地分解为多个固有模态... 为解决风压测量中传感器数据间歇性缺失问题,提出基于改进经验模态分解算法(IEMD)和双向长短期记忆网络(BiLSTM)的结构表面风压时程预测方法.首先,采用基于软筛分停止准则的改进经验模态分解方法,将风压时程自适应地分解为多个固有模态函数,并通过样本熵对其进行重构获得子序列;其次,针对各子序列完成双向长短期记忆网络的构建、训练及预测,并利用贝叶斯优化(BO)算法对神经网络超参数进行优化;最后,基于低矮房屋风洞测压试验数据进行了风荷载预测,验证了学习模型的有效性.研究表明,与传统预测模型(多层感知器、BiLSTM)相比,基于改进经验模态分解与BiLSTM神经网络的预测模型具有较高的预测精度和计算效率,适用于高斯与非高斯风压信号预测. 展开更多
关键词 低矮房屋 风荷载 深度学习 双向LSTM 改进经验模态分解 贝叶斯优化 时程预测
在线阅读 下载PDF
基于贝叶斯优化BiLSTM的锂电池SOH预测
20
作者 谢小鹏 王银河 +4 位作者 熊鹏宇 陈军华 金道元 王文 赵芳 《电源技术》 北大核心 2025年第5期1013-1018,共6页
为了解决锂电池健康状态(SOH)预测中数据驱动模型长时间序列特征捕捉不准确、模型参数调优困难的问题,提出了一种基于贝叶斯优化双向长短期记忆网络(BiLSTM)的SOH预测模型。通过对电池充放电数据进行预处理,提取了恒流充电时间、电压波... 为了解决锂电池健康状态(SOH)预测中数据驱动模型长时间序列特征捕捉不准确、模型参数调优困难的问题,提出了一种基于贝叶斯优化双向长短期记忆网络(BiLSTM)的SOH预测模型。通过对电池充放电数据进行预处理,提取了恒流充电时间、电压波动和放电容量变化率等健康因子(HI)作为模型输入;利用贝叶斯优化对BiLSTM模型的超参数进行优化,建立基于贝叶斯优化BiLSTM的SOH预测模型。实验结果表明,研究模型在四个电池老化数据集上均表现出色,其均方根误差(RMSE)和平均绝对误差(MAE)值最低,决定系数(R2)值最高,显著优于其他传统模型。 展开更多
关键词 健康状态 锂电池 bilstm 贝叶斯优化
在线阅读 下载PDF
上一页 1 2 29 下一页 到第
使用帮助 返回顶部