期刊文献+
共找到68,400篇文章
< 1 2 250 >
每页显示 20 50 100
基于Bi-LSTM神经网络的大气阻力系数预测 被引量:2
1
作者 陈祥 戴吾蛟 +3 位作者 张梦晨 边朗 唐成盼 李凯 《大地测量与地球动力学》 CSCD 北大核心 2024年第11期1161-1166,共6页
大气阻力难以精确建模,是低轨卫星精密定轨与轨道预测最大的动力学误差源。定轨处理时考虑利用时变的大气阻力系数(C_(D))来吸收大气阻力模型误差,从而获得较好的轨道拟合结果。然而由于缺少精确的建模方法来反映C_(D)参数的时变特征,... 大气阻力难以精确建模,是低轨卫星精密定轨与轨道预测最大的动力学误差源。定轨处理时考虑利用时变的大气阻力系数(C_(D))来吸收大气阻力模型误差,从而获得较好的轨道拟合结果。然而由于缺少精确的建模方法来反映C_(D)参数的时变特征,导致轨道预报误差逐渐发散。针对该问题,提出基于Bi-LSTM神经网络预测C_(D)参数的轨道预报方法。首先通过动力学定轨方法解算GRACE-C卫星(GRCC)和Sentinel-3A卫星(SN3A)长期的C_(D)参数序列,然后采用Bi-LSTM神经网络方法进行C_(D)参数预测。结果显示,GRCC和SN3A卫星C_(D)预测值的MAE均值分别为0.0302和0.0774,RMSE均值分别为0.0416和0.1018。将C_(D)参数预测结果运用到两颗卫星4组轨道预报实验中,结果表明,GRCC卫星预报7d的最高平均精度为12.28m,平均精度提升率均在90%以上;SN3A卫星最高平均精度为16.00m,平均精度提升率最高可达74.82%。 展开更多
关键词 神经网络 大气阻力系数 低轨卫星 轨道预测
在线阅读 下载PDF
基于迁移学习和Bi-LSTM神经网络的桥梁温度-应变映射建模方法 被引量:8
2
作者 方佳畅 黄天立 +1 位作者 李苗 王亚飞 《振动与冲击》 EI CSCD 北大核心 2023年第12期126-134,186,共10页
为快速构建并准确预测温度作用引起的斜拉桥主梁应变用于结构状态评估,基于某大跨度斜拉桥主梁超过1年的温度和应变监测数据,提出了一种基于迁移学习和双向长短时记忆(bi-directional long short-term memory,Bi-LSTM)神经网络的斜拉桥... 为快速构建并准确预测温度作用引起的斜拉桥主梁应变用于结构状态评估,基于某大跨度斜拉桥主梁超过1年的温度和应变监测数据,提出了一种基于迁移学习和双向长短时记忆(bi-directional long short-term memory,Bi-LSTM)神经网络的斜拉桥温度-应变映射模型建立方法。首先,利用解析模态分解(analytical mode decomposition,AMD)去噪应变数据,得到仅由温度引起的应变响应;其次,选择温度和某一测点应变数据构成数据集,采用Bi-LSTM神经网络训练该数据集,并通过网络结构和超参数优化建立温度-应变Bi-LSTM基准模型;最后,利用迁移学习方法,将已训练好的基准模型中部分参数迁移到其他温度-应变数据集,建立相应的温度-应变映射被迁移模型,并与未采用迁移学习的神经网络训练方法进行对比。研究结果表明,相比直接建立的温度-应变Bi-LSTM神经网络映射模型,采用迁移学习方法建立的被迁移模型,其拟合精度均高于所用的基准模型,且训练时间短,预测误差小。 展开更多
关键词 结构健康监测 大跨度斜拉桥 温度-应变映射模型 迁移学习 双向长短时记忆(bi-lstm)神经网络
在线阅读 下载PDF
基于SSA-Bi-LSTM神经网络的母线负荷预测方法 被引量:11
3
作者 胡如乐 陈逸枞 +3 位作者 张大海 张沛 王舒杨 喻芸 《广东电力》 2022年第2期19-26,共8页
为了提高母线负荷预测精度,针对长短期记忆(long short term memory,LSTM)神经网络在母线负荷预测时存在对负荷规律提取不足导致精度下降、超参数设置依赖经验等问题,首先构建LSTM神经网络的变体网络———双向长短期记忆(Bi-directiona... 为了提高母线负荷预测精度,针对长短期记忆(long short term memory,LSTM)神经网络在母线负荷预测时存在对负荷规律提取不足导致精度下降、超参数设置依赖经验等问题,首先构建LSTM神经网络的变体网络———双向长短期记忆(Bi-directional LSTM,Bi-LSTM)神经网络,捕获时间序列未来可用的信息。然后采用麻雀搜索算法(sparrow search algorithm,SSA)搜索最优超参数,得到最优学习率、隐层神经元数目和迭代次数等。以实际10kV母线数据对SSA-Bi-LSTM神经网络模型进行验证,并与Bi-LSTM神经网络和BP神经网络进行对比,结果表明SSA-Bi-LSTM神经网络模型的预测效果更佳。 展开更多
关键词 母线负荷 双向长短期记忆神经网络 负荷预测 麻雀搜索算法 长短期记忆神经网络
在线阅读 下载PDF
基于MSCNN-GRU神经网络补全测井曲线和可解释性的智能岩性识别 被引量:1
4
作者 王婷婷 王振豪 +2 位作者 赵万春 蔡萌 史晓东 《石油地球物理勘探》 北大核心 2025年第1期1-11,共11页
针对传统岩性识别方法在处理测井曲线缺失、准确性以及模型可解释性等方面的不足,提出了一种基于MSCNN-GRU神经网络补全测井曲线和Optuna超参数优化的XGBoost模型的可解释性的岩性识别方法。首先,针对测井曲线在特定层段丢失或失真的问... 针对传统岩性识别方法在处理测井曲线缺失、准确性以及模型可解释性等方面的不足,提出了一种基于MSCNN-GRU神经网络补全测井曲线和Optuna超参数优化的XGBoost模型的可解释性的岩性识别方法。首先,针对测井曲线在特定层段丢失或失真的问题,引入了基于多尺度卷积神经网络(MSCNN)与门控循环单元(GRU)神经网络相结合的曲线重构方法,为后续的岩性识别提供了准确的数据基础;其次,利用小波包自适应阈值方法对数据进行去噪和归一化处理,以减少噪声对岩性识别的影响;然后,采用Optuna框架确定XGBoost算法的超参数,建立了高效的岩性识别模型;最后,利用SHAP可解释性方法对XGBoost模型进行归因分析,揭示了不同特征对于岩性识别的贡献度,提升了模型的可解释性。结果表明,Optuna-XGBoost模型综合岩性识别准确率为79.91%,分别高于支持向量机(SVM)、朴素贝叶斯、随机森林三种神经网络模型24.89%、12.45%、6.33%。基于Optuna-XGBoost模型的SHAP可解释性的岩性识别方法具有更高的准确性和可解释性,能够更好地满足实际生产需要。 展开更多
关键词 岩性识别 多尺度卷积神经网络 门控循环单元神经网络 XGBoost 超参数优化 可解释性
在线阅读 下载PDF
基于多域图神经网络的疾病预测模型 被引量:2
5
作者 罗熹 刘洋 安莹 《湖南大学学报(自然科学版)》 北大核心 2025年第4期124-134,共11页
电子病历数据类型多样以及时序不规则,现有的基于深度学习的方法在特征学习的过程中大多无法同时兼顾对不同类型临床数据间静态关联和就诊记录间动态时序依赖的有效捕获.针对该问题,本文提出了一种基于多域图神经网络的疾病预测模型.该... 电子病历数据类型多样以及时序不规则,现有的基于深度学习的方法在特征学习的过程中大多无法同时兼顾对不同类型临床数据间静态关联和就诊记录间动态时序依赖的有效捕获.针对该问题,本文提出了一种基于多域图神经网络的疾病预测模型.该方法首先利用一个结合编码级注意力和时间感知LSTM的时序特征学习模块获得患者每次就诊的初始特征表示.然后,根据就诊序列中不同就诊间的相关性和时间间隔信息分别构建了一个就诊亲和图和一个就诊时序图,并通过图卷积神经网络从图中挖掘就诊记录间的静态语义关联和动态时序依赖.最后,利用一个基于自注意力机制的多域特征融合模块将时序特征和语义关联特征结合起来得到最终的患者融合特征表示,用于患者未来的疾病预测.在两个真实临床数据集上的实验结果表明,本文方法超过其他现有的方法获得了更高的预测准确性. 展开更多
关键词 电子病历 疾病预测 神经网络 注意力机制
在线阅读 下载PDF
响应面法结合深度神经网络优化刺五加果多糖提取工艺 被引量:3
6
作者 苏适 董立强 +3 位作者 黎莉 王双侠 王喜庆 张金凤 《包装与食品机械》 北大核心 2025年第2期66-74,共9页
为提高刺五加果多糖的提取率,提出基于Box-Behnken响应面法与深度神经网络模型(deep neural network,DNN)协同优化的微波辅助离子液体提取工艺。通过响应面设计,筛选微波功率、离子液体浓度、提取时间及料液比等参数,并构建二次回归模型... 为提高刺五加果多糖的提取率,提出基于Box-Behnken响应面法与深度神经网络模型(deep neural network,DNN)协同优化的微波辅助离子液体提取工艺。通过响应面设计,筛选微波功率、离子液体浓度、提取时间及料液比等参数,并构建二次回归模型;利用DNN模型解析多因素间非线性关系,优化工艺条件。结果表明,DNN模型得到的最优工艺条件为微波功率350 W、离子液体浓度0.6 mol/L、提取时间35 min、料液比1∶24(g/mL),多糖提取率为16.71%,高于响应面法优化的提取工艺结果。体外抗氧化试验显示,刺五加果多糖对羟基自由基、DPPH自由基和ABTS^(+)·自由基的半数抑制浓度(IC_(50))分别为2.36,2.05,2.47 mg/mL。研究为刺五加果在功能性食品及抗衰老保健品开发中的应用提供理论依据。 展开更多
关键词 刺五加果 多糖 工艺优化 响应面法 深度神经网络 抗氧化活性
在线阅读 下载PDF
基于小波包分解和神经网络集成群的滚动轴承故障诊断 被引量:1
7
作者 柴立平 孟壮壮 +1 位作者 石海峡 李强 《合肥工业大学学报(自然科学版)》 北大核心 2025年第4期447-454,共8页
文章提出一种将多个神经网络相结合的神经网络集成群算法进行滚动轴承故障诊断。首先对原始振动信号进行小波包变换,分别采用小波包能量和小波包样本熵作为特征向量;其次采用多个粒子群优化反向传播(particle swarm optimization-back p... 文章提出一种将多个神经网络相结合的神经网络集成群算法进行滚动轴承故障诊断。首先对原始振动信号进行小波包变换,分别采用小波包能量和小波包样本熵作为特征向量;其次采用多个粒子群优化反向传播(particle swarm optimization-back propagation,PSO-BP)神经网络分别对轴承进行故障诊断,比较分析小波包能量和小波包样本熵作为特征向量的适配程度;再以多个神经网络作为神经网络集成群的基础子网络,通过统计耦合、输出耦合和统计输出耦合形成神经网络集成群的二级网络;最后通过最终统计耦合输出神经网络集成群的分类结果。研究结果表明,该方法可获得理想的滚动轴承故障诊断准确率,在负载变化时具有良好的泛化性能。 展开更多
关键词 滚动轴承 故障诊断 小波包变换 粒子群优化反向传播神经网络 神经网络集成群
在线阅读 下载PDF
基于改进卷积神经网络的风电机组叶片覆冰诊断方法研究 被引量:3
8
作者 邢作霞 张玥 +1 位作者 郭珊珊 张超 《太阳能学报》 北大核心 2025年第3期661-667,共7页
针对风电机组叶片覆冰影响机组运行安全和降低发电量的问题,提出一种基于极端梯度提升算法和麻雀搜索算法优化卷积神经网络的风电机组叶片覆冰诊断方法。首先,利用基于极端梯度提升算法计算实际机组监控和数据采集系统(SCADA)数据的特... 针对风电机组叶片覆冰影响机组运行安全和降低发电量的问题,提出一种基于极端梯度提升算法和麻雀搜索算法优化卷积神经网络的风电机组叶片覆冰诊断方法。首先,利用基于极端梯度提升算法计算实际机组监控和数据采集系统(SCADA)数据的特征权重,筛除冗余特征变量,降低诊断模型的复杂度、减少诊断时间;再利用卷积神经网络模型对筛选后SCADA数据进行特征提取建立叶片覆冰诊断分类模型;最后,利用麻雀搜索算法对诊断模型中的超参数寻优,提高诊断模型的准确率。实验结果表明提出的方法对叶片覆冰的诊断准确率达到98%,相比于长短期记忆网络、K近邻算法等分类模型诊断准确率更高。 展开更多
关键词 风电机组 故障诊断 叶片覆冰 神经网络 麻雀搜索算法
在线阅读 下载PDF
基于短时随机充电数据和优化卷积神经网络的锂电池健康状态估计 被引量:1
9
作者 申江卫 折亦鑫 +4 位作者 舒星 刘永刚 魏福星 夏雪磊 陈峥 《储能科学与技术》 北大核心 2025年第4期1585-1595,共11页
用户充电过程较强的随机性,导致很难获得完整且固定的充电段用于精确表征电池健康状态的变化。针对充电行为的无序性,提出了一种基于随机健康指标和卷积神经网络的电池健康状态估计方法。对锂电池的原始充电电压时序数据进行分割作为随... 用户充电过程较强的随机性,导致很难获得完整且固定的充电段用于精确表征电池健康状态的变化。针对充电行为的无序性,提出了一种基于随机健康指标和卷积神经网络的电池健康状态估计方法。对锂电池的原始充电电压时序数据进行分割作为随机充电数据,使用单一卷积神经网络架构从中自适应提取老化特征,并采用蜣螂优化算法对其参数寻优,建立了多阶段模型。仅使用短时随机原始充电电压数据即可实现电池健康状态估计,且有效适用于不同充电模式和充电速率。实验测试验证结果表明,使用连续5 s(100个数据点)的原始电压时序数据,在恒流-恒压充电模式下,锂电池健康状态估计结果平均绝对误差小于2.07%,在多阶段恒流充电模式下,锂电池健康状态估计结果平均绝对误差小于1.22%。 展开更多
关键词 健康状态 随机充电 数据分割 卷积神经网络 锂离子电池
在线阅读 下载PDF
基于卷积和Transformer神经网络架构搜索的脑胶质瘤多组织分割网络 被引量:1
10
作者 陶永鹏 柏诗淇 周正文 《计算机应用》 北大核心 2025年第7期2378-2386,共9页
脑胶质瘤在磁共振成像(MRI)图像中的形状大小变化大、边界模糊且组织结构复杂,这些特点导致了脑肿瘤分割任务的挑战性,通常这种任务需要具备深厚专业知识的研究人员设计复杂定制的网络模型才能完成。这一过程不仅耗时,而且需要大量的人... 脑胶质瘤在磁共振成像(MRI)图像中的形状大小变化大、边界模糊且组织结构复杂,这些特点导致了脑肿瘤分割任务的挑战性,通常这种任务需要具备深厚专业知识的研究人员设计复杂定制的网络模型才能完成。这一过程不仅耗时,而且需要大量的人力资源。为了简化网络设计流程并自动获取最优的网络结构,提出一种基于卷积和Transformer神经网络架构搜索的脑胶质瘤多组织分割网络(NASCT-Net),以在构建用于多模态MRI脑肿瘤分割的网络架构的过程中,提高分割的精确度。首先,将神经架构搜索(NAS)技术应用于编码器的构建,形成可堆叠的NAS编解码模块,以自动优化适用于脑胶质瘤精准分割的网络架构;其次,在编码器底层集成基于Transformer的特征编码模块,以增强对肿瘤各组之间的相对位置和全局信息的表征能力;最后,通过构建体积加权Dice损失函数(VWDiceLoss),解决前景与背景的不平衡问题。在BraTS2019脑肿瘤数据集上与Swin-Unet等方法进行比较的实验结果表明,NASCT-Net的平均Dice相似系数(DSC)提高了0.009,同时平均Hausdorff距离(HD)降低了1.831 mm,验证了NASCT-Net在提高脑肿瘤多组织分割精度方面的有效性。 展开更多
关键词 网络架构 神经网络架构搜索 脑肿瘤分割 卷积神经网络 TRANSFORMER
在线阅读 下载PDF
基于神经网络模型的煤层气产能预测研究
11
作者 金毅 郑晨晖 +5 位作者 宋慧波 马家恒 杨运航 刘顺喜 张昆 倪小明 《河南理工大学学报(自然科学版)》 CAS 北大核心 2025年第1期46-56,共11页
目的煤层气产能主要受地质和工程因素影响,阐明这些因素对煤层气井产能的影响机制是实现储层精细改造和煤层气井提产的基础。方法本文以沁水盆地柿庄南区块为研究对象,综合考虑地质背景、储层物性和动态排采数据,利用神经网络算法开展... 目的煤层气产能主要受地质和工程因素影响,阐明这些因素对煤层气井产能的影响机制是实现储层精细改造和煤层气井提产的基础。方法本文以沁水盆地柿庄南区块为研究对象,综合考虑地质背景、储层物性和动态排采数据,利用神经网络算法开展煤层气产能预测。首先,利用灰色关联分析法遴选出10个地质参数作为煤层气产能预测的主控因素,在此基础上,运用模糊数学法实现研究区34口煤层气井富集区划分,最后,根据分类结果,结合实际排采数据,分别利用BP(back propagation)和LSTM(long short-term memory)神经网络算法实现煤层气井日产气量预测。结果结果表明:(1)渗透率、含气饱和度和储层压力梯度等10个参数是影响研究区煤层气产气性能的关键因素;(2)利用模糊数学评价方法评价煤层气的富集,可将研究区34口井产气效果划分为有利区、较有利区和不利区;(3)依托LSTM算法建立了煤储层日产气量预测模型,预测误差值为4.06%~14.79%,平均误差值为11.09%,预测精度明显高于BP神经网络模型,结论根据LSTM算法建立的煤储层日产气量预测模型稳定性好且预测精度高,可作为煤储层产能长程预测的一种有效手段,进而为煤层气开发工艺布施与排采方案制定提供科学依据。 展开更多
关键词 LSTM神经网络 BP神经网络 灰色关联分析 产能预测
在线阅读 下载PDF
利用改进卷积神经网络的螺杆砂带磨削表面粗糙度预测 被引量:1
12
作者 杨赫然 张培杰 +2 位作者 孙兴伟 潘飞 刘寅 《中国机械工程》 北大核心 2025年第2期325-332,共8页
为便捷、准确地预测磨削后螺杆转子的表面粗糙度,提出了一种基于自注意力卷积神经网络(SA-CNN)的磨削曲面粗糙度测量方法。通过正交试验获得螺杆转子的表面粗糙度以及粗糙度数值对应位置的表面图像,图像经自适应直方图均衡化、反锐化掩... 为便捷、准确地预测磨削后螺杆转子的表面粗糙度,提出了一种基于自注意力卷积神经网络(SA-CNN)的磨削曲面粗糙度测量方法。通过正交试验获得螺杆转子的表面粗糙度以及粗糙度数值对应位置的表面图像,图像经自适应直方图均衡化、反锐化掩蔽等预处理后作为训练样本输入SA-CNN模型中。采用SA-CNN模型对磨削后的螺杆转子表面粗糙度值进行预测,并与经典网络ResNet、AlexNet、VGG-16、基础CNN以及图神经网络GNN预测结果进行对比。试验结果表明,SA-CNN模型的平均预测精度达到95.24%,均方根误差(RMSE)为0.0706μm,平均绝对百分比误差(MAPE)为7.4206%,均优于对比网络,且模型收敛较快,表现出较高的精度和良好的鲁棒性。 展开更多
关键词 磨削 表面粗糙度 卷积神经网络 正交试验
在线阅读 下载PDF
基于卷积神经网络的立体匹配算法研究 被引量:1
13
作者 郭北涛 刘瀚齐 +1 位作者 刘琪 张丽秀 《组合机床与自动化加工技术》 北大核心 2025年第1期69-73,78,共6页
在基于深度学习的立体匹配问题中,模型的网络结构、参数设置对匹配精度和匹配效率起到决定性作用。针对现有模型参数量大,精度低的问题,设计一种基于卷积神经网络的视差回归模型。首先,提出了基于扩张卷积和空间池化金字塔的多尺度特征... 在基于深度学习的立体匹配问题中,模型的网络结构、参数设置对匹配精度和匹配效率起到决定性作用。针对现有模型参数量大,精度低的问题,设计一种基于卷积神经网络的视差回归模型。首先,提出了基于扩张卷积和空间池化金字塔的多尺度特征提取网络,提高弱纹理区域的匹配精度;其次,改进了代价体相似度计算步骤,在保证匹配精度的同时,降低模型的参数量;最后,通过采取视差梯度信息和视差回归损失函数相结合的策略,有效地解决了在视差不连续区域中存在的边界信息保留不完整的问题。使用Middlebury数据集对模型进行验证,实验结果表明,相较于现有的立体匹配算法,在精度和速度方面都有所提升。 展开更多
关键词 机器视觉 立体匹配 卷积神经网络 深度学习
在线阅读 下载PDF
多源异质数据下深度神经网络的整合分析及其应用 被引量:1
14
作者 王小燕 冮建伟 +1 位作者 王洁丹 王德青 《统计研究》 北大核心 2025年第2期122-134,共13页
随着计算机技术的发展,各行各业累积和存储了丰富的数据。这些数据往往具有来源差异性、高维性特点,基于这些特征的多源数据建模是统计学的热点问题。针对多源异质数据,本文提出深度神经网络整合分析模型(IADNN)。该模型建立了L_(1)-CMC... 随着计算机技术的发展,各行各业累积和存储了丰富的数据。这些数据往往具有来源差异性、高维性特点,基于这些特征的多源数据建模是统计学的热点问题。针对多源异质数据,本文提出深度神经网络整合分析模型(IADNN)。该模型建立了L_(1)-CMCP惩罚,以识别重要特征以及处理数据的异质性,其中外层MCP识别对多源数据集整体显著的特征;中层MCP识别特征在数据集层面的异质性;内层Lasso识别DNN节点的异质性。这种嵌套设计旨在促进数据集间的信息共享。本文对L_(1)-CMCP进行局部线性近似,再采用近端梯度下降算法进行模型估计。模拟分析表明,IADNN在特征选择和分类预测方面均有良好表现。当多源数据部分异质时,所提方法的F_(1)分数、FPR等评估指标均优于各数据集独立建模和合并建模的方法;在多源数据完全异质或完全同质时,所提方法取得了与理论最佳模型相近的效果。最后,将IADNN应用于不同经济发展水平地区的信用违约数据,发现该模型在风险指标选择和违约预测方面具备有效性。 展开更多
关键词 多源数据 整合分析 深度神经网络 信用评分
在线阅读 下载PDF
多通道句法门控图神经网络用于句子级情感分析 被引量:1
15
作者 张吴波 邹旺 +2 位作者 熊黎 戴顺鄂 吴文欢 《计算机工程与应用》 北大核心 2025年第8期135-144,共10页
情感分析技术是自然语言处理领域的一项重要任务。然而,现阶段文档级图神经网络的图构建复杂且需要占用大量的内存资源。在线评论文本一般由短句组成,文档级图神经网络进行情感分析的效率较低。此外,现有工作中句子级图神经网络未能充... 情感分析技术是自然语言处理领域的一项重要任务。然而,现阶段文档级图神经网络的图构建复杂且需要占用大量的内存资源。在线评论文本一般由短句组成,文档级图神经网络进行情感分析的效率较低。此外,现有工作中句子级图神经网络未能充分结合文本的单词特征、依存特征和词性特征。针对以上问题,提出一种多通道句法门控图神经网络的句子级情感分析方法(MSGNN)。该模型以句子的依存句法关系图为骨架,词性特征、单词特征和依存特征作为节点特征信息;利用三通道的门控图神经网络分别学习三种特征;采用图卷积神经网络聚合节点的特征信息。在SST-1、SST-2、MR三种基准数据集上的实验结果表明该模型相比基线模型的性能有所提升。 展开更多
关键词 情感分析 句子级图神经网络 依存特征 门控图神经网络
在线阅读 下载PDF
基于动量算法优化的BP神经网络HRG漂移补偿方法 被引量:1
16
作者 罗巍 魏博深 +2 位作者 陈刚 唐明浩 戴劼峰 《中国惯性技术学报》 北大核心 2025年第5期502-509,共8页
针对半球谐振陀螺(HRG)漂移传统分步标定补偿方法存在的补偿精度低与耗时长问题,提出一种基于动量算法优化的反向传播(BP)神经网络HRG漂移补偿方法。根据HRG误差模型分析了分步标定补偿方法的局限性,构建了基于BP神经网络的HRG漂移补偿... 针对半球谐振陀螺(HRG)漂移传统分步标定补偿方法存在的补偿精度低与耗时长问题,提出一种基于动量算法优化的反向传播(BP)神经网络HRG漂移补偿方法。根据HRG误差模型分析了分步标定补偿方法的局限性,构建了基于BP神经网络的HRG漂移补偿模型,并引入动量算法,提升BP神经网络训练效率,利用三只自研的HRG进行了实验验证。实验结果表明:所提方法能够有效提升陀螺精度,同时简化标定和补偿流程,提高陀螺漂移补偿工作效率,相比现有分步标定补偿法,陀螺精度提升36.1%,标定补偿效率提升32.1%。 展开更多
关键词 半球谐振陀螺 BP神经网络 陀螺漂移补偿
在线阅读 下载PDF
基于人工神经网络和机器视觉的棉花分拣系统研究 被引量:2
17
作者 朱西方 《农机化研究》 北大核心 2025年第4期208-212,共5页
首先,介绍了卷积神经网络的原理,并基于双目视觉搭建了棉花分拣视觉系统;然后,基于3×3窗口、Sobel和Hough等算法,实现了棉花图像的边缘检测和特征提取功能;最后,基于卷积神经网络对棉花图像进行特征提取和优劣分类,并利用双目视觉... 首先,介绍了卷积神经网络的原理,并基于双目视觉搭建了棉花分拣视觉系统;然后,基于3×3窗口、Sobel和Hough等算法,实现了棉花图像的边缘检测和特征提取功能;最后,基于卷积神经网络对棉花图像进行特征提取和优劣分类,并利用双目视觉对识别的棉花进行空间定位。实验结果表明:棉花分拣系统的准确率为96.50%,能够有效地满足实际应用的要求。 展开更多
关键词 棉花分拣系统 卷积神经网络 双目视觉 SOBEL HOUGH
在线阅读 下载PDF
小样本下基于改进麻雀算法优化卷积神经网络的飞轮储能系统损耗 被引量:4
18
作者 魏乐 李承霖 +1 位作者 房方 刘渝斌 《电网技术》 北大核心 2025年第1期366-372,I0113-I0115,共10页
飞轮储能系统具有待机损耗,不适合长期储能。针对飞轮损耗这一经济指标,基于飞轮储能系统运行的小样本数据,提出了一种结合Logistic混沌麻雀优化算法和卷积神经网络的飞轮损耗计算模型。首先,分析了飞轮损耗产生的原因;接下来对宁夏灵... 飞轮储能系统具有待机损耗,不适合长期储能。针对飞轮损耗这一经济指标,基于飞轮储能系统运行的小样本数据,提出了一种结合Logistic混沌麻雀优化算法和卷积神经网络的飞轮损耗计算模型。首先,分析了飞轮损耗产生的原因;接下来对宁夏灵武电厂的飞轮运行数据进行预处理,并使用对抗生成网络进行小样本扩充;然后基于卷积神经网络建立损耗模型,使用改进的麻雀算法对模型超参数进行优化,并通过对比验证了该模型的优越性;最后通过仿真实验证明了该模型能够优化飞轮储能系统的出力,降低飞轮损耗。 展开更多
关键词 飞轮储能系统损耗 小样本学习 卷积神经网络 麻雀搜索算法 LOGISTIC混沌映射
在线阅读 下载PDF
融合深度神经网络的电力系统经济-环保随机调度方法 被引量:1
19
作者 陈远扬 谭益 李勇 《电网技术》 北大核心 2025年第5期1993-2003,共11页
通过优化调度改善电网有功潮流分布、减小火电大气污染物与二氧化碳排放,是实现电力系统环保、经济、安全运行的重要途径。针对含碳捕集电厂、风力发电、常规火电等多种电源的电力系统,该文综合考虑二氧化碳与大气污染物排放、风电出力... 通过优化调度改善电网有功潮流分布、减小火电大气污染物与二氧化碳排放,是实现电力系统环保、经济、安全运行的重要途径。针对含碳捕集电厂、风力发电、常规火电等多种电源的电力系统,该文综合考虑二氧化碳与大气污染物排放、风电出力随机性、N-1故障等多类型因素,建立了面向环保、安全、经济运行的电力系统有功随机调度模型。在该模型中,目标函数考虑了火电的环保与燃料成本、风电成本、N-1故障后校正控制成本等因素,约束条件包括正常运行约束、N-1故障后计及校正控制的电网安全约束等。针对所提有功随机调度模型的特点,该文提出了融合全连接型深度神经网络的快速高效求解方法。该方法通过全连接型深度神经网络构建用于优化软件寻优搜索的初始点,进而加速所提模型的求解过程。最后,该文通过3个修改后的IEEE测试系统验证了所提模型与方法的有效性。 展开更多
关键词 环保-经济调度 碳捕集电厂 风电 随机优化 深度神经网络
在线阅读 下载PDF
基于图神经网络模型校准的成员推理攻击 被引量:1
20
作者 谢丽霞 史镜琛 +2 位作者 杨宏宇 胡泽 成翔 《电子与信息学报》 北大核心 2025年第3期780-791,共12页
针对图神经网络(GNN)模型在其预测中常处于欠自信状态,导致该状态下实施成员推理攻击难度大且攻击漏报率高的问题,该文提出一种基于GNN模型校准的成员推理攻击方法。首先,设计一种基于因果推断的GNN模型校准方法,通过基于注意力机制的... 针对图神经网络(GNN)模型在其预测中常处于欠自信状态,导致该状态下实施成员推理攻击难度大且攻击漏报率高的问题,该文提出一种基于GNN模型校准的成员推理攻击方法。首先,设计一种基于因果推断的GNN模型校准方法,通过基于注意力机制的因果图提取、因果图与非因果图解耦、后门路径调整策略和因果关联图生成过程,构建用于训练GNN模型的因果关联图。其次,使用与目标因果关联图在相同数据分布下的影子因果关联图构建影子GNN模型,模拟目标GNN模型的预测行为。最后,使用影子GNN模型的后验概率构建攻击数据集以训练攻击模型,根据目标GNN模型对目标节点的后验概率输出推断其是否属于目标GNN模型的训练数据。在4个数据集上的实验结果表明,该文方法在2种攻击模式下面对不同架构的GNN模型进行攻击时,攻击准确率最高为92.6%,性能指标优于基线攻击方法,可有效地实施成员推理攻击。 展开更多
关键词 神经网络 成员推理攻击 模型校准 因果推断 隐私风险
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部