期刊文献+

利用改进卷积神经网络的螺杆砂带磨削表面粗糙度预测 被引量:2

Surface Roughness Prediction for Screw Belt Grinding Based on Improved CNN
在线阅读 下载PDF
导出
摘要 为便捷、准确地预测磨削后螺杆转子的表面粗糙度,提出了一种基于自注意力卷积神经网络(SA-CNN)的磨削曲面粗糙度测量方法。通过正交试验获得螺杆转子的表面粗糙度以及粗糙度数值对应位置的表面图像,图像经自适应直方图均衡化、反锐化掩蔽等预处理后作为训练样本输入SA-CNN模型中。采用SA-CNN模型对磨削后的螺杆转子表面粗糙度值进行预测,并与经典网络ResNet、AlexNet、VGG-16、基础CNN以及图神经网络GNN预测结果进行对比。试验结果表明,SA-CNN模型的平均预测精度达到95.24%,均方根误差(RMSE)为0.0706μm,平均绝对百分比误差(MAPE)为7.4206%,均优于对比网络,且模型收敛较快,表现出较高的精度和良好的鲁棒性。 A grinding surface roughness measurement method was proposed based on SA-CNN for convenient and accurate prediction of roughness values on screw rotor surfaces after grinding.Through orthogonal experiments,the surface roughness values of screw rotors and corresponding surface images were obtained.After preprocessing including adaptive histogram equalization and unsharp masking,the images were used as training samples input into the SA-CNN model.The SA-CNN model was employed to predict the roughness values on the grinding surfaces of screw rotors and compared with the predictions of classical networks such as ResNet,AlexNet,VGG-16,basic CNN,and graph neural network(GNN).Experimental results show that the SA-CNN model achieves an average prediction accuracy of 95.24%,with an RMSE of 0.0706μm and an MAPE of 7.4206%,outperforming the compared networks.Furthermore,the SA-CNN model exhibits fast convergence,high accuracy,and good robustness.
作者 杨赫然 张培杰 孙兴伟 潘飞 刘寅 YANG Heran;ZHANG Peijie;SUN Xingwei;PAN Fei;LIU Yin(College of Mechanical Engineering,Shenyang University of Technology,Shenyang,110870;Key Laboratory of Numerical Control Manufacturing Technology for Complex Surfaces of Liaoning Province,Shenyang,110870)
出处 《中国机械工程》 北大核心 2025年第2期325-332,共8页 China Mechanical Engineering
基金 辽宁省教育厅2022年度高等学校基本科研项目(LJKMZ20220459) 辽宁省应用基础研究计划(2022JH2/101300214)。
关键词 磨削 表面粗糙度 卷积神经网络 正交试验 grinding surface roughness convolutional neural network(CNN) orthogonal experiment
作者简介 杨赫然,男,1983年生,副教授、博士.研究方向为复杂曲面精密制造.E-mail:yangheran@sut.edu.cn;通信作者:孙兴伟,女,1970年生,教授、博士研究生导师.研究方向为数控装备及理论.E-mail:sunxingw@126.com.
  • 相关文献

参考文献14

二级参考文献105

共引文献138

同被引文献19

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部