This study investigates the factors affecting the rock-breaking efficiency of the TBM disc cutter in deep rock excavation,including confining pressure,penetration,cutter spacing,and revolution speed.The finite element...This study investigates the factors affecting the rock-breaking efficiency of the TBM disc cutter in deep rock excavation,including confining pressure,penetration,cutter spacing,and revolution speed.The finite element method is employed to formulate a rock-breaking model of the rotary disc cutters and a numerical simulation is also implemented.The rock breaking effect,rock breaking volume,and rock breaking specific energy consumption under different combinations of the factors are investigated.An orthogonal test of four factors at four levels was constructed.Based on the test results and range analysis in the process of deep rock mass breaking,the order of sensitivity of each influencing factor with respect to the rock breaking specific energy for the disc cutter is cutter spacing>revolution speed>penetration>confining pressure.By constructing a numerical simulation comparison scheme,the orthogonal test results are analyzed and corroborated,and the rock breaking law and rock breaking efficiency under different influencing factors are derived.Finally,the sensitivity of different influencing factors on the rock-breaking efficiency is verified.展开更多
To study the rock breaking method under the free surface induced by disc cutter,the rock breaking simulations were first conducted based on the discrete element method,and the dynamic process of rock breaking under th...To study the rock breaking method under the free surface induced by disc cutter,the rock breaking simulations were first conducted based on the discrete element method,and the dynamic process of rock breaking under the free surface was studied including stressed zone,crush zone,crack initiation and propagation.Then the crack propagation conditions,specific energy,etc.under different free surface distance(S)were also investigated combined with linear cutting experiments.The results show that the rock breaking process under the free surface induced by disc cutter is dominated by tension failure mode.There exists a critical S to promote crack propagation to free surface effectively.And this rock breaking method can improve the rock breaking force and breaking efficiency significantly when proper.展开更多
In order to study rock breaking characteristics of tunnel boring machine(TBM) disc cutter at different rock temperatures,thermodynamic rock breaking mathematical model of TBM disc cutter was established on the basis o...In order to study rock breaking characteristics of tunnel boring machine(TBM) disc cutter at different rock temperatures,thermodynamic rock breaking mathematical model of TBM disc cutter was established on the basis of rock temperature change by using particle flow code theory and the influence law of interaction mechanism between disc cutter and rock was also numerically simulated.Furthermore,by using the linear cutting experiment platform,rock breaking process of TBM disc cutter at different rock temperatures was well verified by the experiments.Finally,rock breaking characteristics of TBM disc cutter were differentiated and analyzed from microscale perspective.The results indicate the follows.1) When rock temperature increases,the mechanical properties of rock such as hardness,and strength,were greatly reduced,simultaneously the microcracks rapidly grow with the cracks number increasing,which leads to rock breaking load decreasing and improves rock breaking efficiency for TBM disc cutter.2) The higher the rock temperature,the lower the rock internal stress.The stress distribution rules coincide with the Buzin Neske stress circle rules: the maximum stress value is below the cutting edge region and then gradually decreases radiant around; stress distribution is symmetrical and the total stress of rock becomes smaller.3) The higher the rock temperature is,the more the numbers of micro,tensile and shear cracks produced are by rock as well as the easier the rock intrusion,along with shear failure mode mainly showing.4) With rock temperature increasing,the resistance intrusive coefficients of rock and intrusion power decrease obviously,so the specific energy consumption that TBM disc cutter achieves leaping broken also decreases subsequently.5) The acoustic emission frequency remarkably increases along with the temperature increasing,which improves the rock breaking efficiency.展开更多
The breakage mechanism of the polycrystalline diamond compact(PDC) cutters was analyzed by the energy theory of bending waves. The cutting tests of granite block were conducted on a multifunctional testing device by u...The breakage mechanism of the polycrystalline diamond compact(PDC) cutters was analyzed by the energy theory of bending waves. The cutting tests of granite block were conducted on a multifunctional testing device by using the cutter at three kinds of negative fore angles of 30°, 45° and 60°. The results show that, when the edge of the PDC layer is broken, the layer of tungsten cobalt is broken a little under the angle of 30°, while the layer of tungsten cobalt is broken continuously under the angle of 60°, their maximum depths are about 2 and 7 mm respectively in the two cases. The eccentric distance mainly depends on the negative fore angle of the cutter. When the cutter thrusts into the rock under an attack angle of 60°, the energy of bending waves reaches the maximum since the eccentric distance is the maximum. So the damage of cutter is the most serious. This test result is consistent with the conclusion of theoretical analysis well. The eccentric distance from the axial line of cutter to the point of action between the rock and cutter has great effect on the breakage of the cutter. Thus during the process of cutting, the eccentric distance should be reduced to improve the service life of PDC cutters.展开更多
A submerged cavitation water jet(SCWJ)is an effective method to recycle solid propellant from obsolete solid engines by the breaking method.Solid propellant's breaking modes and mechanical process under SCWJ impac...A submerged cavitation water jet(SCWJ)is an effective method to recycle solid propellant from obsolete solid engines by the breaking method.Solid propellant's breaking modes and mechanical process under SCWJ impact are unclear.This study aims to understand those impact breaking mechanisms.The hydroxyl-terminated polybutadiene(HTPB)propellant was chosen as the research material,and a self-designed test system was used to conduct impact tests at four different working pressures.The high-speed camera characterized crack propagation,and the DIC method calculated strain change during the impact process.Besides,micro and macro fracture morphologies were characterized by scanning electron microscope(SEM)and computed tomography(CT)scanning.The results reveal that the compressive strain concentration region locates right below the nozzle,and the shear strain region distributes symmetrically with the jet axis,which increases to 4% at first 16th ms,the compressive strain rises to 2% and 6% in the axial and transverse direction,respectively.The two tensile cracks formed first at the compression strain concentrate region,and there generate many shear cracks around the tensile cracks,and those shear cracks that develop and aggregate cause the cracks to become wider and cut through the tensile cracks,forming the tensile-shear cracks and the impact parts eventually fail.The HTPB propellant forms a breaking hole shaped conical after impact 10 s.The mass loss increases by 17 times at maximum,with the working pressure increasing by three times.Meanwhile,the damage value of the breaking hole remaining on the surface increases by 7.8 times while 2.9 times in the depth of the breaking hole.The breaking efficiency is closely affected by working pressures.The failure modes of HTPB impacted by SCWJ are classified as tensile crack-dominated and tensile-shear crack-dominated damage mechanisms.展开更多
In the field of automobile manufacture, during the aluminum alloy cutting, chip forming and breaking process are very complicated. It is affected by many facto rs. Automatic machining process can not be carried throug...In the field of automobile manufacture, during the aluminum alloy cutting, chip forming and breaking process are very complicated. It is affected by many facto rs. Automatic machining process can not be carried through if the chip enlaces t he workpiece or the tool. So the chip control and breaking are key technology. P CD tool has many traits, such as high cutting efficiency, machining precision an d wearability. It is desired that it be used for machining coloured metals.The p aper present the study of prediction of chip breaking when PCD Tool cutting alum inum alloy with chip breaker. In the process of cutting, the method of chip brea king is up-curl-dominant chip. Therefore, based on the theory of chip breaking with chip breaker, used the cutting condition of chip breaking, this paper dedu ce the chip breaking mathematical model when cutting aluminum alloy, that is to say, the chip breaker parameters(Angle of chip break,chip groove width, bevel a ngle, the normal rake angle of chip groove, tool cutting edge angle)influence th e critical feed rate. The following conclusion can be made from theoretic analys is. The critical feed rate will decrease when the Angle of chip break and bevel angle and the normal rake angle of chip groove and tool cutting edge angle incre ase. The critical feed rate will increase when chip groove width increase. The e xperimental results are well coincided with the theoretic ones, it is proved tha t the predicting system is correct.展开更多
近日,武汉大学国家网络安全学院2022级博士生张神轶撰写的论文被第34届USENIX安全研讨会(The 34rd USENIX Security Symposium 2025)录用。论文题目为“JBShield:Defending Large Language Models from Jailbreak Attacks through Activ...近日,武汉大学国家网络安全学院2022级博士生张神轶撰写的论文被第34届USENIX安全研讨会(The 34rd USENIX Security Symposium 2025)录用。论文题目为“JBShield:Defending Large Language Models from Jailbreak Attacks through Activated Concept Analysis and Manipulation”(《基于激活概念分析和控制的大型语言模型越狱防御》),指导老师为武汉大学国家网络安全学院王骞教授(通讯作者)、赵令辰副教授,与纽约州立大学布法罗分校Hongxin Hu教授、西安交通大学沈超教授和香港城市大学王聪教授合作完成。国家网络安全学院2023级硕士生翟雨辰和郭晟男、2022级硕士生方正参与了该成果的研究工作。展开更多
Air-bubble generator is the key part of the self-inspiration type swirl flotation machines,whose flow field structure has a great effect on flotation.The multiphase volume of fluid(VOF),standard k-ε turbulent model a...Air-bubble generator is the key part of the self-inspiration type swirl flotation machines,whose flow field structure has a great effect on flotation.The multiphase volume of fluid(VOF),standard k-ε turbulent model and the SIMPLE method were chosen to simulate the present model;the first order upwind difference scheme was utilized to perform a discrete solution for momentum equation.The distributing law of the velocity,pressure,turbulent kinetic energy of every section along the flow direction of air-bubble generator was analyzed.The results indicate that the bubbles are heavily broken up in the middle cross section of throat sect and the entrance of diffuser sect along the flow direction,and the turbulent kinetic energy of diffuser sect is larger than the entrance of throat sect and mixing chamber.展开更多
Based on the simplification of cutting process,a series of numerical simulations were conducted using a 2-D discrete element method to explore the effects of embedded cracks with different dip angles on the rock fragm...Based on the simplification of cutting process,a series of numerical simulations were conducted using a 2-D discrete element method to explore the effects of embedded cracks with different dip angles on the rock fragmentation process,cutting characteristics and breaking efficiency.The results show that the simulated results are in a good agreement with previous theoretical study.The main crack propagates to the top tip of embedded crack,except when the dip angle is 90°.Side cracks which are more fully developed in the rocks containing embedded cracks tend to propagate towards the free surface.According to the history of vertical cutting force,it is shown that the peak force is decreased by embedded cracks.The study on cutting efficiency was conducted by combining the quantity of crack and cutting energy.And the results show that breaking efficiency can be treated as a decreasing or a increasing function when the dip angle is less or larger than 30°,respectively.Breaking efficiency is higher than that in intact rock when the dip angle is larger than 45°.展开更多
Laser technology holds significant promise for enhancing rock-breaking efficiency.Experimental investigations were carried out on sandstone subjected to laser radiation,aiming to elucidate its response mechanism to su...Laser technology holds significant promise for enhancing rock-breaking efficiency.Experimental investigations were carried out on sandstone subjected to laser radiation,aiming to elucidate its response mechanism to such radiation.The uniaxial compressive strength of sandstone notably decreases by 22.1%–54.7%following exposure to a 750 W laser for 30 s,indicating a substantial weakening effect.Furthermore,the elastic modulus and Poisson ratio of sandstone exhibit an average decrease of 33.7%and 25.9%,respectively.Simultaneously,laser radiation reduces the brittleness of sandstone,increases the dissipated energy proportion,and shifts the failure mode from tensile to tension-shear composite failure.Following laser radiation,both the number and energy of acoustic emission events in the sandstone register a substantial increase,with a more dispersed distribution of these events.In summary,laser radiation induces notable damage to the mechanical properties of sandstone,leading to a substantial decrease in elastic energy storage capacity.Laser rock breaking technology is expected to be applied in hard rock breaking engineering to significantly reduce the difficulty of rock breaking and improve rock breaking efficiency.展开更多
Background The China Finance Review International is a flagship academic journal broadly covering the Chinese and international financial markets.The journal is founded by Antai College of Economics and Management at ...Background The China Finance Review International is a flagship academic journal broadly covering the Chinese and international financial markets.The journal is founded by Antai College of Economics and Management at Shanghai Jiao Tong University,one of the top universities in Asia.The China Finance Review International aims to publish quality empirical and theoretical works on important financial and economic issues in the profession.We encourage ground-breaking research related to new and niche areas in finance,such as Fintech and cryptos,ESG,climate finance,and socially responsible investments.We welcome critiques of existing literature and comparative analysis between emerging markets and developed economies.展开更多
The core-disk phenomenon has been observed generally in the drilling process under high-stress conditions.This paper presents the in-situ experimental study of the coring-disking failure mechanism of marble in an unde...The core-disk phenomenon has been observed generally in the drilling process under high-stress conditions.This paper presents the in-situ experimental study of the coring-disking failure mechanism of marble in an underground cavens with 2400 m depth.Based on the disk samples in several boreholes with different diameters,both macro-and micro-morphological characteristics of core-disks’break surface were analysis,using 3D optical scanning and electron microscope scanning.Moreover,the numerical back analysis was also used to simulate the drilling process for demonstrating the development of core disking.The in-situ experiment results showed that the failure types of core disking consisted of tensile break and shear break,i.e.,the shear break usually appears in the edge part of break surface,and tensile break appears in the central part.What’s more,the ration of core-disks thickness to borehole diameter is in a relatively stable range.Numerical back analysis indicated this micro asynchronous break of hard marble is induced by high geostress and unloading drill.展开更多
In order to reveal the relationship between the penecontemporaneous karstification and sedimentary microtopography in sequence stratigraphy,the sequence stratigraphic framework of Lianglitage formation in Upper Ordovi...In order to reveal the relationship between the penecontemporaneous karstification and sedimentary microtopography in sequence stratigraphy,the sequence stratigraphic framework of Lianglitage formation in Upper Ordovician is studied according to the well drilling,logging,geophysical data,detailed observations of core and the paleontology.The Lianglitage formation belongs to the sequence Ⅳ of Ordovician.The second member of Lianglitage formation is prograde sedimentation in highstand systems tract,and is favorable for developing reef flat.The development scale and thickness of reef flat are controlled by the variation of secondary sea level.The types and characteristics of karst in the highstand systems tract show that the late highstand systems tract is dissolved and cemented by the meteoric fresh water and mixed water.Penecontemporaneous karstification is developed at the top of parasequence and high place of geomorphology.Atmospheric diagenetic lens is formed.The developing regulations and controlling factors of penecontemporaneous karstification can provide new clues to the prediction and exploration of favorable reservoir in this area.展开更多
基金Project(51979156)supported by the National Natural Science Foundation of ChinaProject(tsqn202103087)supported by the Young Taishan Scholars,ChinaProject(2019KJG015)supported by the Youth Innovation Technology Project of Higher School in Shandong Province,China。
文摘This study investigates the factors affecting the rock-breaking efficiency of the TBM disc cutter in deep rock excavation,including confining pressure,penetration,cutter spacing,and revolution speed.The finite element method is employed to formulate a rock-breaking model of the rotary disc cutters and a numerical simulation is also implemented.The rock breaking effect,rock breaking volume,and rock breaking specific energy consumption under different combinations of the factors are investigated.An orthogonal test of four factors at four levels was constructed.Based on the test results and range analysis in the process of deep rock mass breaking,the order of sensitivity of each influencing factor with respect to the rock breaking specific energy for the disc cutter is cutter spacing>revolution speed>penetration>confining pressure.By constructing a numerical simulation comparison scheme,the orthogonal test results are analyzed and corroborated,and the rock breaking law and rock breaking efficiency under different influencing factors are derived.Finally,the sensitivity of different influencing factors on the rock-breaking efficiency is verified.
基金Project(2013CB035401)supported by the National Basic Research Program of ChinaProject(2012AA041803)supported by the National High-Technology Research and Development Program of China+2 种基金Project(51475478)supported by the National Natural Science Foundation of ChinaProject(2015GK1029)supported by the Science and Technology Project of Strategic Emerging Industry in Hunan Province,ChinaProject(CX2017B048)supported by the Hunan Provincial Innovation Foundation For Postgraduate,China
文摘To study the rock breaking method under the free surface induced by disc cutter,the rock breaking simulations were first conducted based on the discrete element method,and the dynamic process of rock breaking under the free surface was studied including stressed zone,crush zone,crack initiation and propagation.Then the crack propagation conditions,specific energy,etc.under different free surface distance(S)were also investigated combined with linear cutting experiments.The results show that the rock breaking process under the free surface induced by disc cutter is dominated by tension failure mode.There exists a critical S to promote crack propagation to free surface effectively.And this rock breaking method can improve the rock breaking force and breaking efficiency significantly when proper.
基金Projects(51274252,51074180)supported by the National Natural Science Foundation of ChinaProject(2013CB035401)supported by the National Basic Research Program of China+1 种基金Projects(2012AA0418012012AA041803)supported by the High-Tech Research and Development Program of China
文摘In order to study rock breaking characteristics of tunnel boring machine(TBM) disc cutter at different rock temperatures,thermodynamic rock breaking mathematical model of TBM disc cutter was established on the basis of rock temperature change by using particle flow code theory and the influence law of interaction mechanism between disc cutter and rock was also numerically simulated.Furthermore,by using the linear cutting experiment platform,rock breaking process of TBM disc cutter at different rock temperatures was well verified by the experiments.Finally,rock breaking characteristics of TBM disc cutter were differentiated and analyzed from microscale perspective.The results indicate the follows.1) When rock temperature increases,the mechanical properties of rock such as hardness,and strength,were greatly reduced,simultaneously the microcracks rapidly grow with the cracks number increasing,which leads to rock breaking load decreasing and improves rock breaking efficiency for TBM disc cutter.2) The higher the rock temperature,the lower the rock internal stress.The stress distribution rules coincide with the Buzin Neske stress circle rules: the maximum stress value is below the cutting edge region and then gradually decreases radiant around; stress distribution is symmetrical and the total stress of rock becomes smaller.3) The higher the rock temperature is,the more the numbers of micro,tensile and shear cracks produced are by rock as well as the easier the rock intrusion,along with shear failure mode mainly showing.4) With rock temperature increasing,the resistance intrusive coefficients of rock and intrusion power decrease obviously,so the specific energy consumption that TBM disc cutter achieves leaping broken also decreases subsequently.5) The acoustic emission frequency remarkably increases along with the temperature increasing,which improves the rock breaking efficiency.
基金Project(06JJ20094) supported by the Natural Science Foundation of Hunan Province, China
文摘The breakage mechanism of the polycrystalline diamond compact(PDC) cutters was analyzed by the energy theory of bending waves. The cutting tests of granite block were conducted on a multifunctional testing device by using the cutter at three kinds of negative fore angles of 30°, 45° and 60°. The results show that, when the edge of the PDC layer is broken, the layer of tungsten cobalt is broken a little under the angle of 30°, while the layer of tungsten cobalt is broken continuously under the angle of 60°, their maximum depths are about 2 and 7 mm respectively in the two cases. The eccentric distance mainly depends on the negative fore angle of the cutter. When the cutter thrusts into the rock under an attack angle of 60°, the energy of bending waves reaches the maximum since the eccentric distance is the maximum. So the damage of cutter is the most serious. This test result is consistent with the conclusion of theoretical analysis well. The eccentric distance from the axial line of cutter to the point of action between the rock and cutter has great effect on the breakage of the cutter. Thus during the process of cutting, the eccentric distance should be reduced to improve the service life of PDC cutters.
基金supported by the Program for National Defense Science and Technology Foundation Strengtheningthe Youth Foundation of Rocket Force University of Engineering(Grant No.2021QN-B014)。
文摘A submerged cavitation water jet(SCWJ)is an effective method to recycle solid propellant from obsolete solid engines by the breaking method.Solid propellant's breaking modes and mechanical process under SCWJ impact are unclear.This study aims to understand those impact breaking mechanisms.The hydroxyl-terminated polybutadiene(HTPB)propellant was chosen as the research material,and a self-designed test system was used to conduct impact tests at four different working pressures.The high-speed camera characterized crack propagation,and the DIC method calculated strain change during the impact process.Besides,micro and macro fracture morphologies were characterized by scanning electron microscope(SEM)and computed tomography(CT)scanning.The results reveal that the compressive strain concentration region locates right below the nozzle,and the shear strain region distributes symmetrically with the jet axis,which increases to 4% at first 16th ms,the compressive strain rises to 2% and 6% in the axial and transverse direction,respectively.The two tensile cracks formed first at the compression strain concentrate region,and there generate many shear cracks around the tensile cracks,and those shear cracks that develop and aggregate cause the cracks to become wider and cut through the tensile cracks,forming the tensile-shear cracks and the impact parts eventually fail.The HTPB propellant forms a breaking hole shaped conical after impact 10 s.The mass loss increases by 17 times at maximum,with the working pressure increasing by three times.Meanwhile,the damage value of the breaking hole remaining on the surface increases by 7.8 times while 2.9 times in the depth of the breaking hole.The breaking efficiency is closely affected by working pressures.The failure modes of HTPB impacted by SCWJ are classified as tensile crack-dominated and tensile-shear crack-dominated damage mechanisms.
文摘In the field of automobile manufacture, during the aluminum alloy cutting, chip forming and breaking process are very complicated. It is affected by many facto rs. Automatic machining process can not be carried through if the chip enlaces t he workpiece or the tool. So the chip control and breaking are key technology. P CD tool has many traits, such as high cutting efficiency, machining precision an d wearability. It is desired that it be used for machining coloured metals.The p aper present the study of prediction of chip breaking when PCD Tool cutting alum inum alloy with chip breaker. In the process of cutting, the method of chip brea king is up-curl-dominant chip. Therefore, based on the theory of chip breaking with chip breaker, used the cutting condition of chip breaking, this paper dedu ce the chip breaking mathematical model when cutting aluminum alloy, that is to say, the chip breaker parameters(Angle of chip break,chip groove width, bevel a ngle, the normal rake angle of chip groove, tool cutting edge angle)influence th e critical feed rate. The following conclusion can be made from theoretic analys is. The critical feed rate will decrease when the Angle of chip break and bevel angle and the normal rake angle of chip groove and tool cutting edge angle incre ase. The critical feed rate will increase when chip groove width increase. The e xperimental results are well coincided with the theoretic ones, it is proved tha t the predicting system is correct.
文摘近日,武汉大学国家网络安全学院2022级博士生张神轶撰写的论文被第34届USENIX安全研讨会(The 34rd USENIX Security Symposium 2025)录用。论文题目为“JBShield:Defending Large Language Models from Jailbreak Attacks through Activated Concept Analysis and Manipulation”(《基于激活概念分析和控制的大型语言模型越狱防御》),指导老师为武汉大学国家网络安全学院王骞教授(通讯作者)、赵令辰副教授,与纽约州立大学布法罗分校Hongxin Hu教授、西安交通大学沈超教授和香港城市大学王聪教授合作完成。国家网络安全学院2023级硕士生翟雨辰和郭晟男、2022级硕士生方正参与了该成果的研究工作。
基金Project supported by the Scientific Research Foundation of Hebei University of Technology of China
文摘Air-bubble generator is the key part of the self-inspiration type swirl flotation machines,whose flow field structure has a great effect on flotation.The multiphase volume of fluid(VOF),standard k-ε turbulent model and the SIMPLE method were chosen to simulate the present model;the first order upwind difference scheme was utilized to perform a discrete solution for momentum equation.The distributing law of the velocity,pressure,turbulent kinetic energy of every section along the flow direction of air-bubble generator was analyzed.The results indicate that the bubbles are heavily broken up in the middle cross section of throat sect and the entrance of diffuser sect along the flow direction,and the turbulent kinetic energy of diffuser sect is larger than the entrance of throat sect and mixing chamber.
基金Project(2013CB035401)supported by the National Basic Research Program of ChinaProject(51174228)supported by the National Natural Science Foundation of ChinaProject(71380100003)supported by Hunan Provincial Innovation Foundation for Postgraduate,China
文摘Based on the simplification of cutting process,a series of numerical simulations were conducted using a 2-D discrete element method to explore the effects of embedded cracks with different dip angles on the rock fragmentation process,cutting characteristics and breaking efficiency.The results show that the simulated results are in a good agreement with previous theoretical study.The main crack propagates to the top tip of embedded crack,except when the dip angle is 90°.Side cracks which are more fully developed in the rocks containing embedded cracks tend to propagate towards the free surface.According to the history of vertical cutting force,it is shown that the peak force is decreased by embedded cracks.The study on cutting efficiency was conducted by combining the quantity of crack and cutting energy.And the results show that breaking efficiency can be treated as a decreasing or a increasing function when the dip angle is less or larger than 30°,respectively.Breaking efficiency is higher than that in intact rock when the dip angle is larger than 45°.
基金Projects(52225403,U2013603,42377143)supported by the National Natural Science Foundation of ChinaProject(2023NSFSC0004)supported by the Sichuan Science and Technology Program,China+1 种基金Project(2023YFB2390200)supported by the National Key R&D Program-Young Scientist Program,ChinaProject(RCJC20210706091948015)supported by the Shenzhen Science Foundation for Distinguished Young Scholars,China。
文摘Laser technology holds significant promise for enhancing rock-breaking efficiency.Experimental investigations were carried out on sandstone subjected to laser radiation,aiming to elucidate its response mechanism to such radiation.The uniaxial compressive strength of sandstone notably decreases by 22.1%–54.7%following exposure to a 750 W laser for 30 s,indicating a substantial weakening effect.Furthermore,the elastic modulus and Poisson ratio of sandstone exhibit an average decrease of 33.7%and 25.9%,respectively.Simultaneously,laser radiation reduces the brittleness of sandstone,increases the dissipated energy proportion,and shifts the failure mode from tensile to tension-shear composite failure.Following laser radiation,both the number and energy of acoustic emission events in the sandstone register a substantial increase,with a more dispersed distribution of these events.In summary,laser radiation induces notable damage to the mechanical properties of sandstone,leading to a substantial decrease in elastic energy storage capacity.Laser rock breaking technology is expected to be applied in hard rock breaking engineering to significantly reduce the difficulty of rock breaking and improve rock breaking efficiency.
文摘Background The China Finance Review International is a flagship academic journal broadly covering the Chinese and international financial markets.The journal is founded by Antai College of Economics and Management at Shanghai Jiao Tong University,one of the top universities in Asia.The China Finance Review International aims to publish quality empirical and theoretical works on important financial and economic issues in the profession.We encourage ground-breaking research related to new and niche areas in finance,such as Fintech and cryptos,ESG,climate finance,and socially responsible investments.We welcome critiques of existing literature and comparative analysis between emerging markets and developed economies.
基金Projects(U1965205,51779251,41672314)supported by the National Natural Science Foundation of China。
文摘The core-disk phenomenon has been observed generally in the drilling process under high-stress conditions.This paper presents the in-situ experimental study of the coring-disking failure mechanism of marble in an underground cavens with 2400 m depth.Based on the disk samples in several boreholes with different diameters,both macro-and micro-morphological characteristics of core-disks’break surface were analysis,using 3D optical scanning and electron microscope scanning.Moreover,the numerical back analysis was also used to simulate the drilling process for demonstrating the development of core disking.The in-situ experiment results showed that the failure types of core disking consisted of tensile break and shear break,i.e.,the shear break usually appears in the edge part of break surface,and tensile break appears in the central part.What’s more,the ration of core-disks thickness to borehole diameter is in a relatively stable range.Numerical back analysis indicated this micro asynchronous break of hard marble is induced by high geostress and unloading drill.
基金Project(2008ZX05004-004)supported by the State Key Scientific Research Programs,ChinaProject(SZD0414)supported by the Sichuan Province Key Discipline Construction Project,ChinaProject(KZCX2-YW-Q05-01)supported by the Chinese Academy of Sciences Innovation Engineering Directional Project
文摘In order to reveal the relationship between the penecontemporaneous karstification and sedimentary microtopography in sequence stratigraphy,the sequence stratigraphic framework of Lianglitage formation in Upper Ordovician is studied according to the well drilling,logging,geophysical data,detailed observations of core and the paleontology.The Lianglitage formation belongs to the sequence Ⅳ of Ordovician.The second member of Lianglitage formation is prograde sedimentation in highstand systems tract,and is favorable for developing reef flat.The development scale and thickness of reef flat are controlled by the variation of secondary sea level.The types and characteristics of karst in the highstand systems tract show that the late highstand systems tract is dissolved and cemented by the meteoric fresh water and mixed water.Penecontemporaneous karstification is developed at the top of parasequence and high place of geomorphology.Atmospheric diagenetic lens is formed.The developing regulations and controlling factors of penecontemporaneous karstification can provide new clues to the prediction and exploration of favorable reservoir in this area.