期刊文献+
共找到3,936篇文章
< 1 2 197 >
每页显示 20 50 100
CGR-BERT-ZESHEL:基于中文特征的零样本实体链接模型 被引量:1
1
作者 潘建 吴志伟 李燕君 《计算机科学》 北大核心 2025年第4期262-270,共9页
目前,在实体链接任务的研究中,对中文实体链接、新兴实体与不知名实体链接的研究较少。此外,传统的BERT模型忽略了中文的两个关键方面,即字形和部首,这两者为语言理解提供了重要的语法和语义信息。针对以上问题,提出了一种基于中文特征... 目前,在实体链接任务的研究中,对中文实体链接、新兴实体与不知名实体链接的研究较少。此外,传统的BERT模型忽略了中文的两个关键方面,即字形和部首,这两者为语言理解提供了重要的语法和语义信息。针对以上问题,提出了一种基于中文特征的零样本实体链接模型CGR-BERT-ZESHEL。该模型首先通过引入视觉图像嵌入和传统字符嵌入,分别将字形特征和部首特征输入模型,从而增强词向量特征并缓解未登录词对模型性能的影响;然后采用候选实体生成和候选实体排序两阶段的方法得到实体链接的结果。在Hansel和CLEEK两个数据集上进行实验,结果表明,与基线模型相比,CGR-BERT-ZESHEL模型在候选实体生成阶段的性能指标Recall@100提高了17.49%和7.34%,在候选实体排序阶段的性能指标Accuracy提高了3.02%和3.11%;同时,在Recall@100和Accuracy指标上的性能均优于其他对比模型。 展开更多
关键词 实体链接 中文零样本 bert 候选实体生成 候选实体排序
在线阅读 下载PDF
基于Bert+GCN多模态数据融合的药物分子属性预测 被引量:1
2
作者 闫效莺 靳艳春 +1 位作者 冯月华 张绍武 《生物化学与生物物理进展》 北大核心 2025年第3期783-794,共12页
目的药物研发成本高、周期长且成功率低。准确预测分子属性对有效筛选药物候选物、优化分子结构具有重要意义。基于特征工程的传统分子属性预测方法需研究人员具备深厚的学科背景和广泛的专业知识。随着人工智能技术的不断成熟,涌现出... 目的药物研发成本高、周期长且成功率低。准确预测分子属性对有效筛选药物候选物、优化分子结构具有重要意义。基于特征工程的传统分子属性预测方法需研究人员具备深厚的学科背景和广泛的专业知识。随着人工智能技术的不断成熟,涌现出大量优于传统特征工程方法的分子属性预测算法。然而这些算法模型仍然存在标记数据稀缺、泛化性能差等问题。鉴于此,本文提出一种基于Bert+GCN的多模态数据融合的分子属性预测算法(命名为BGMF),旨在整合药物分子的多模态数据,并充分利用大量无标记药物分子训练模型学习药物分子的有用信息。方法本文提出了BGMF算法,该算法根据药物SMILES表达式分别提取了原子序列、分子指纹序列和分子图数据,采用预训练模型Bert和图卷积神经网络GCN结合的方式进行特征学习,在挖掘药物分子中“单词”全局特征的同时,融合了分子图的局部拓扑特征,从而更充分利用分子全局-局部上下文语义关系,之后,通过对原子序列和分子指纹序列的双解码器设计加强分子特征表达。结果5个数据集共43个分子属性预测任务上,BGMF方法的AUC值均优于现有其他方法。此外,本文还构建独立测试数据集验证了模型具有良好的泛化性能。对生成的分子指纹表征(molecular fingerprint representation)进行t-SNE可视化分析,证明了BGMF模型可成功捕获不同分子指纹的内在结构与特征。结论通过图卷积神经网络与Bert模型相结合,BGMF将分子图数据整合到分子指纹恢复和掩蔽原子恢复的任务中,可以有效地捕捉分子指纹的内在结构和特征,进而高效预测药物分子属性。 展开更多
关键词 bert预训练 注意力机制 分子指纹 分子属性预测 图卷积神经网络
在线阅读 下载PDF
融合ChatGPT与BERT的个性化图书分类推荐探索
3
作者 郭利敏 杨佳 +1 位作者 刘悦如 付雅明 《图书馆论坛》 北大核心 2025年第10期109-117,共9页
为探讨图书馆个性化书目推荐的新路径,文章提出融合ChatGPT与BERT的“编码-分类”策略,将推荐任务转化为文本分类问题,以提升推荐方法的语义理解和可释性,拓展大语言模型在图书馆应用的边界。基于上海图书馆开放数据构建训练集,选取100... 为探讨图书馆个性化书目推荐的新路径,文章提出融合ChatGPT与BERT的“编码-分类”策略,将推荐任务转化为文本分类问题,以提升推荐方法的语义理解和可释性,拓展大语言模型在图书馆应用的边界。基于上海图书馆开放数据构建训练集,选取100位读者的借阅数据作为验证集,使用ChatGPT编码借阅意图,BERT进行文本分类预测,并与协同过滤法进行比较。实验显示该方法在分类推荐中优于传统协同过滤,验证了推荐任务转化思路的有效性,并为语义增强与分层建模提供了可行方向。 展开更多
关键词 智慧图书馆 个性化推荐 ChatGPT bert
在线阅读 下载PDF
基于BERT-MHA的深度语义增强专家推荐算法
4
作者 申彦 王倩 《科学技术与工程》 北大核心 2025年第25期10810-10820,共11页
针对现有的专家推荐算法忽略了用户评论中蕴含的情感表达对专家专长表征的影响,从而导致推荐准确度不高的问题,提出基于双向编码器表示-多头注意力机制(bidirectional encoder representations from transformers-multi-head attention,... 针对现有的专家推荐算法忽略了用户评论中蕴含的情感表达对专家专长表征的影响,从而导致推荐准确度不高的问题,提出基于双向编码器表示-多头注意力机制(bidirectional encoder representations from transformers-multi-head attention,BERT-MHA)的深度语义增强专家推荐算法。该算法基于预训练BERT模型,融合MHA机制,自动调整用户评论对专家历史回答问题的情感注意力权重,获取专家动态专长表征,并与静态专长联合以实现专家特征文本的语义增强,表征专家综合专长;通过注意力机制识别用户问题特征;采用多层感知机建模专家综合专长与用户问题间的非线性交互,预测推荐专家的匹配度。利用好大夫网站(haodf.com)的数据进行了不同参数配置及不同算法的对比实验,实验结果表明该算法在准确率(accuracy,ACC)和曲线下的面积(area under curve,AUC)指标下明显优于其他算法,能有效提高在线问答社区的专家推荐准确度。 展开更多
关键词 bert 多头注意力 语义增强 专家推荐 深度学习
在线阅读 下载PDF
基于BERT并融合法律事件信息的罪名预测方法
5
作者 邱一卉 喻瑶瑶 《厦门大学学报(自然科学版)》 北大核心 2025年第4期642-652,共11页
[目的]罪名预测是AI&Law领域的一个关键研究内容,对于提升司法领域的判决效率具有重要意义.由于法律文本的专业性和复杂性,传统罪名预测模型在提取法律文本特征时面临挑战,因此本文提出了一个基于预训练语言模型(BERT)并融合法律事... [目的]罪名预测是AI&Law领域的一个关键研究内容,对于提升司法领域的判决效率具有重要意义.由于法律文本的专业性和复杂性,传统罪名预测模型在提取法律文本特征时面临挑战,因此本文提出了一个基于预训练语言模型(BERT)并融合法律事件信息的罪名预测模型,通过利用法律事件信息为模型提供更多的法律案件特征,提升模型对案件的理解,从而提升罪名预测的表现.[方法]首先训练了一个全局上层事件类型信息增强的法律事件检测模型,利用其对案情描述中的法律事件类型进行检测,并在此基础上构建法律事件类型序列.其次,利用双向长短期记忆模型(BiLSTM)对法律事件类型序列进行编码获取法律事件信息,并将法律事件信息与经过BERT编码后的案情描述的语义表示拼接融合,最后利用一层全连接层对罪名进行预测.[结果]在公开的刑事案件数据集CAIL2018-small上的实验结果表明,相比于领域内的其他基线模型,本文提出的模型在各个关键指标上具备更好的性能,即在Mac.F_(1)上平均提升3.12个百分点,在Mac.P上平均提升1.94个百分点,在Mac.R上平均提升3.53个百分点.[结论]验证了法律事件信息在增强模型对案件理解方面的有效性,从而提高罪名预测的准确性. 展开更多
关键词 AI&Law bert模型 罪名预测 法律事件信息
在线阅读 下载PDF
基于BERT和自注意力SRU的AST级Webshell检测方法
6
作者 李道丰 宁梓桁 《信息网络安全》 北大核心 2025年第2期270-280,共11页
Webshell作为一种隐蔽性强、危害性大的网页后门,已在网络安全领域受到广泛关注。Webshell代码的混淆技术显著降低了传统检测方法的有效性,且许多传统检测模型未能有效应对高效处理大量数据的需求。因此,文章提出一种结合BERT词嵌入、双... Webshell作为一种隐蔽性强、危害性大的网页后门,已在网络安全领域受到广泛关注。Webshell代码的混淆技术显著降低了传统检测方法的有效性,且许多传统检测模型未能有效应对高效处理大量数据的需求。因此,文章提出一种结合BERT词嵌入、双向SRU网络结合自注意力机制的Webshell检测方法BAT-SRU。该方法通过抽象语法树提取代码特征,结合样本解混淆与危险函数统计提升特征质量,并采用BAT-SRU模型进行检测。现有方法如基于Word2Vec与双向GRU的检测方法、基于操作码序列与随机森林的分类方法以及基于Text-CNN的AST特征提取方法,存在特征表达不足和对复杂混淆代码适应性差的问题。相比上述方法,BAT-SRU在检测PHP Webshell上性能更优异,得到了准确率99.68%、精确率99.13%、召回率99.22%和F1值99.18%的实验结果。此外,与RNN及其变体模型相比,BAT-SRU在训练时间上可以节约23.47%,在推理时间上可以节省40.14%。 展开更多
关键词 PHP Webshell 抽象语法树 bert词嵌入 SRU 自注意力
在线阅读 下载PDF
基于融合评价指标BERT-RGCN的油田评价区块调整措施推荐方法
7
作者 王梅 朱晓丽 +2 位作者 孙洪国 王海艳 濮御 《东北石油大学学报》 北大核心 2025年第5期110-120,I0008,共12页
为解决油田领域区块调整措施推荐过程中存在的样本数据稀疏和语义特征复杂等问题,提出基于融合评价指标(EI)的变换器双向编码(BERT)与关系图卷积神经网络(RGCN)的油田评价区块调整措施推荐方法(EI-BERT-RGCN方法)。根据评价指标、评价... 为解决油田领域区块调整措施推荐过程中存在的样本数据稀疏和语义特征复杂等问题,提出基于融合评价指标(EI)的变换器双向编码(BERT)与关系图卷积神经网络(RGCN)的油田评价区块调整措施推荐方法(EI-BERT-RGCN方法)。根据评价指标、评价区块及措施之间的交互信息构建异构图,利用BERT模型生成评价指标、评价区块及措施术语词向量,共同作为输入词向量,将融合评价指标信息的异构图和输入词向量放入RGCN模型训练,学习评价区块的有效表征;在某油田评价区块提供的数据集上进行实验对比。结果表明:EI-BERT-RGCN方法能够捕捉文本中隐含的复杂语义并缓解数据稀疏问题,能更好理解未观察到的评价指标与调整措施之间的潜在关系,提升节点的表示质量。EI-BERT-RGCN模型在精确率、召回率、F_(1)分数及ROC曲线下面积等评价指标上优于其他基准模型,在保持较高精确率的同时,展现更好的泛化能力和鲁棒性。该结果为油田评价区块调整措施推荐提供参考。 展开更多
关键词 异构图 变换器双向编码(bert) 预训练模型 关系图卷积神经网络(RGCN) 推荐算法 措施推荐 油田评价区块
在线阅读 下载PDF
面向中文小样本命名实体识别的BERT优化方法 被引量:1
8
作者 杨三和 赖沛超 +3 位作者 傅仰耿 王一蕾 叶飞扬 张林 《小型微型计算机系统》 北大核心 2025年第3期602-611,共10页
为解决中文小样本命名实体识别(NER)任务所面临的问题和挑战,提出了一种面向中文小样本NER的BERT优化方法,该方法包含两方面的优化:首先,针对训练样本数量不足限制了预训练语言模型BERT的语义感知能力的问题,提出了ProConBERT,一种基于... 为解决中文小样本命名实体识别(NER)任务所面临的问题和挑战,提出了一种面向中文小样本NER的BERT优化方法,该方法包含两方面的优化:首先,针对训练样本数量不足限制了预训练语言模型BERT的语义感知能力的问题,提出了ProConBERT,一种基于提示学习与对比学习的BERT预训练策略.在提示学习阶段,设计掩码填充模板来训练BERT预测出每个标记对应的中文标签词.在对比学习阶段,利用引导模板训练BERT学习每个标记和标签词之间的相似性与差异性.其次,针对中文缺乏明确的词边界所带来的复杂性和挑战性,修改BERT模型的第一层Transformer结构,并设计了一种带有混合权重引导器的特征融合模块,将词典信息集成到BERT底层中.最后,实验结果验证了所提方法在中文小样本NER任务中的有效性与优越性.该方法结合BERT和条件随机场(CRF)结构,在4个采样的中文NER数据集上取得了最好的性能.特别是在Weibo数据集的3个小样本场景下,模型的F 1值分别达到了63.78%、66.27%、70.90%,与其他方法相比,平均F 1值分别提高了16.28%、14.30%、11.20%.此外,将ProConBERT应用到多个基于BERT的中文NER模型中能进一步提升实体识别的性能. 展开更多
关键词 中文小样本命名实体识别 提示学习 对比学习 预训练 特征融合 bert模型
在线阅读 下载PDF
基于Sentence-BERT与孤立森林算法的专利新颖性评估
9
作者 邓娜 王雨佳 +1 位作者 杨洋 陈旭 《情报杂志》 北大核心 2025年第2期174-182,共9页
[研究目的]面对专利数量的迅猛增长,采用人工方法评估专利新颖性变得愈发困难,且目前专利新颖性评估研究过度聚焦于技术层面,未能综合考虑专利的其他信息因素。因此,实现更高效、客观的专利新颖性评估具有重要的现实意义。[研究方法]提... [研究目的]面对专利数量的迅猛增长,采用人工方法评估专利新颖性变得愈发困难,且目前专利新颖性评估研究过度聚焦于技术层面,未能综合考虑专利的其他信息因素。因此,实现更高效、客观的专利新颖性评估具有重要的现实意义。[研究方法]提出一种基于Sentence-BERT与孤立森林算法的专利新颖性评估方法。首先,使用专利标题与IPC分类号分别作为专利的应用方向与功能分类特征,再通过BiLSTM-CRF模型对专利摘要进行关键技术抽取作为实施方法特征;其次,采用Sentence-BERT对上述特征进行文本向量化表示后组合输入至孤立森林算法获得离群专利集;最后,通过技术量权值过滤法提高专利新颖性评估的精度。[研究结果/结论]以金融科技领域专利进行实证研究,结果表明,该评估方法准确率相较专业专利分析平台方法提升了9%~11%。证明了该方法在专利新颖性评估中的有效性,能为后续专利审核工作和高价值专利分析提供参考。 展开更多
关键词 专利评估 专利新颖性 BiLSTM-CRF Sentence-bert 孤立森林算法 机器学习
在线阅读 下载PDF
一种基于注意力机制的BERT-CNN-GRU检测方法 被引量:3
10
作者 郑雅洲 刘万平 黄东 《计算机工程》 北大核心 2025年第1期258-268,共11页
针对现有检测方法对短域名检测性能普遍较差的问题,提出一种BERT-CNN-GRU结合注意力机制的检测方法。通过BERT提取域名的有效特征和字符间组成逻辑,根据并行的融合简化注意力的卷积神经网络(CNN)和基于多头注意力机制的门控循环单元(GRU... 针对现有检测方法对短域名检测性能普遍较差的问题,提出一种BERT-CNN-GRU结合注意力机制的检测方法。通过BERT提取域名的有效特征和字符间组成逻辑,根据并行的融合简化注意力的卷积神经网络(CNN)和基于多头注意力机制的门控循环单元(GRU)提取域名深度特征。CNN使用n-gram排布的方式提取不同层次的域名信息,并采用批标准化(BN)对卷积结果进行优化。GRU能够更好地获取前后域名的组成差异,多头注意力机制在捕获域名内部的组成关系方面表现出色。将并行检测网络输出的结果进行拼接,最大限度地发挥两种网络的优势,并采用局部损失函数聚焦域名分类问题,提高分类性能。实验结果表明,该方法在二分类上达到了最优效果,在短域名多分类数据集上15分类的加权F1值达到了86.21%,比BiLSTM-Seq-Attention模型提高了0.88百分点,在UMUDGA数据集上50分类的加权F1值达到了85.51%,比BiLSTM-Seq-Attention模型提高了0.45百分点。此外,该模型对变体域名和单词域名生成算法(DGA)检测性能较好,具有处理域名数据分布不平衡的能力和更广泛的检测能力。 展开更多
关键词 恶意短域名 bert预训练 批标准化 注意力机制 门控循环单元 并行卷积神经网络
在线阅读 下载PDF
基于答案感知的BERT自回归藏文问题生成方法
11
作者 杨毛加 柔特 +2 位作者 才智杰 官却才让 才让加 《中文信息学报》 北大核心 2025年第9期53-61,共9页
问题生成(QG)是自然语言处理中一个具有挑战性的任务,其目标是根据不同类型的数据,生成语法正确且语义相关的问题。目前,融合答案信息的问题生成方法主要采用序列到序列的神经网络模型,但这些方法存在以下问题:①对RNN模型的依赖性高;... 问题生成(QG)是自然语言处理中一个具有挑战性的任务,其目标是根据不同类型的数据,生成语法正确且语义相关的问题。目前,融合答案信息的问题生成方法主要采用序列到序列的神经网络模型,但这些方法存在以下问题:①对RNN模型的依赖性高;②欠缺捕捉输入文本的语义信息;③缺乏对少数民族语言中问题生成的研究。针对以上问题,该文通过一种基于答案感知的BERT自回归方法改进了藏文问题生成。首先,该方法利用藏文预训练模型BERT来处理问题生成任务;其次,通过重组输入部分以进一步提升问题生成的性能,即不断将新生成的词元追加到输入文本中,直到预测到特定的结束标记,使其变为一种连续的生成方式,从而改善了生成的连贯性;最后,为了增强问题和答案的关联,该文通过标记答案位置的方式来指示问题生成,以消除歧义并提高问题的质量。经过实验验证,该文所使用的方法在藏文问题生成任务中表现出明显的性能提升,相较于基线系统,生成的问题更准确和更连贯。 展开更多
关键词 问题生成 自然语言处理 bert 藏文
在线阅读 下载PDF
基于BERT模型的主设备缺陷诊断方法研究 被引量:3
12
作者 杨虹 孟晓凯 +3 位作者 俞华 白洋 韩钰 刘永鑫 《电力系统保护与控制》 北大核心 2025年第7期155-164,共10页
主设备缺陷诊断旨在及时定位处理电网的异常情况,是电力系统平稳运行的基础。传统方法以人工为主,存在效率低下、诊断成本高、依赖专家经验等问题。为了弥补这些不足,提出了一种基于BERT语言模型的主设备缺陷诊断方法。首先,使用BERT初... 主设备缺陷诊断旨在及时定位处理电网的异常情况,是电力系统平稳运行的基础。传统方法以人工为主,存在效率低下、诊断成本高、依赖专家经验等问题。为了弥补这些不足,提出了一种基于BERT语言模型的主设备缺陷诊断方法。首先,使用BERT初步理解输入,获取嵌入表示,结合缺陷等级分类任务判断故障的危急程度。然后,利用大语言模型汇总输入信息和评判结果,并通过大语言模型提示学习提高知识问答过程的准确性与推理可靠性,返回正确有效的回答。最后,探究了大语言模型在电力领域的应用潜力。实验结果表明,所提方法在缺陷等级分类任务和问答任务上都表现良好,可以生成高质量的分类证据和指导信息。 展开更多
关键词 缺陷诊断 大语言模型 bert 提示学习 分类模型
在线阅读 下载PDF
基于BERT和提示学习的网络暴力言论识别研究 被引量:2
13
作者 曾江峰 高鹏钰 +1 位作者 李玲 马霄 《情报杂志》 北大核心 2025年第5期82-90,共9页
[研究目的]为解决传统网络暴力言论识别中忽视文本深层语义信息,以及对数据集规模存在较强依赖性的问题,基于BERT和提示学习构建网络暴力言论识别模型,提高网络暴力言论识别准确性,维护网络健康秩序。[研究方法]利用BERT的上下文理解及... [研究目的]为解决传统网络暴力言论识别中忽视文本深层语义信息,以及对数据集规模存在较强依赖性的问题,基于BERT和提示学习构建网络暴力言论识别模型,提高网络暴力言论识别准确性,维护网络健康秩序。[研究方法]利用BERT的上下文理解及掩码预测机制,提升复杂语境下网络暴力言论识别的精确度,同时,构建离散型与连续型模板,通过实例引导连续型评论文本向量强化特定情境与提示关联,与离散型评论文本向量结合形成集成提示,加权融合后得到分类预测,为网络暴力言论识别领域提供了新的研究思路和解决方案。[研究结果/结论]以微博和抖音中的三起公共事件为数据来源,构建小规模暴力言论识别数据集进行实证分析,实验结果表明,在小规模数据集上,基于BERT和提示学习的模型相较对比实验中性能最优的BERT+P-tuning方法,F1值提升约3.63%,验证了模型性能的优越性。 展开更多
关键词 网络暴力 暴力言论识别 bert 提示学习 微博 抖音
在线阅读 下载PDF
基于BERT和Bi-LSTM的题目难度预测:知识点标签增强模型
14
作者 叶航 柴春来 +2 位作者 张思赟 陈东烁 吴霁航 《计算机应用》 北大核心 2025年第S1期37-42,共6页
目前在高校C语言编程课程中,使用客观评价的题目难度考验学生的学习情况是非常重要的手段。目前大部分难度评估方法都针对特有科目和特有题型,而对中文编程题目的难度评估存在不足。因此,提出一种融合题目文本和知识点标签的基于BERT(Bi... 目前在高校C语言编程课程中,使用客观评价的题目难度考验学生的学习情况是非常重要的手段。目前大部分难度评估方法都针对特有科目和特有题型,而对中文编程题目的难度评估存在不足。因此,提出一种融合题目文本和知识点标签的基于BERT(Bidirectional Encoder Representations from Transformers)和双向长短时记忆(Bi-LSTM)模型的C语言题目难度预测模型FTKB-BiLSTM(Fusion of Title and Knowledge based on BERT and Bi-LSTM)。首先,利用BERT的中文预训练模型获得题目文本和知识点的词向量;其次,融合模块将融合后的信息通过BERT处理得到文本的信息表示,并输入Bi-LSTM模型中学习其中的序列信息,提取更丰富的特征;最后,把经Bi-LSTM模型得到的特征表示通过全连接层并经过Softmax函数处理得到题目难度分类结果。在Leetcode中文数据集和ZjgsuOJ平台数据集上的实验结果表明,相较于XLNet等主流的深度学习模型,所提模型的准确率更优,具有较强的分类能力。 展开更多
关键词 自然语言处理 深度学习 题目难度预测 bert 预训练模型
在线阅读 下载PDF
基于BERT的多层次特征融合的舆情文本政策意愿识别模型研究 被引量:1
15
作者 翁克瑞 周雅洁 於世为 《中国地质大学学报(社会科学版)》 北大核心 2025年第1期131-140,共10页
传统政策需求研究因成本和时间因素,逐渐转向利用社交媒体进行政策需求智能发现。尽管社交媒体提供了丰富的公众政策意愿,但捕捉其中的政策观点受到语义模糊性和复杂评论网络关系的挑战。为解决以上问题,本文提出ConTextBERT-CNN模型,... 传统政策需求研究因成本和时间因素,逐渐转向利用社交媒体进行政策需求智能发现。尽管社交媒体提供了丰富的公众政策意愿,但捕捉其中的政策观点受到语义模糊性和复杂评论网络关系的挑战。为解决以上问题,本文提出ConTextBERT-CNN模型,以识别社交媒体上的公众政策意愿。该模型结合了优化后的BERT预训练模型和改进的TextCNN架构,通过全词掩码技术增强了中文语义理解,并融合不同层级的解码层输出实现对多层语义信息的精细提取。实验结果表明,ConTextBERT-CNN模型在处理新能源汽车、碳中和、分时电价政策主题的数据集时,分别达到了86.4%、82.0%、82.5%的分类准确率,显著优于传统的深度学习方法,证明其在捕捉和解析公众政策意愿方面具有高效性和准确性。 展开更多
关键词 社交媒体 政策需求 bert 舆情政策文本
在线阅读 下载PDF
基于适应性预训练和DBERT的汉籍使者行程命名实体识别
16
作者 谢玉成 苗威 +3 位作者 姜斌 陈建红 王一钒 徐长皓 《中文信息学报》 北大核心 2025年第7期82-90,共9页
“汉籍合璧”是国家重要文化工程,汉籍中人物行程路线的可视化是“汉籍合璧”工程的研究内容之一。目前的古汉语命名实体识别存在实体边界定位不准确、基于全监督的传统模型在少量样本中学习性能差和泛化能力弱等问题。针对以上问题,该... “汉籍合璧”是国家重要文化工程,汉籍中人物行程路线的可视化是“汉籍合璧”工程的研究内容之一。目前的古汉语命名实体识别存在实体边界定位不准确、基于全监督的传统模型在少量样本中学习性能差和泛化能力弱等问题。针对以上问题,该文提出一种汉籍使者行程命名实体定义方案,构建了基于《奉使辽金行程录》的使者行程命名实体数据集SongCorpus;提出一种基于APDBERT的汉籍人物行程命名实体识别方法。该方法第一阶段使用古汉语语料对RoBERTa-WWM模型和ERNIE模型进行无监督适应性预训练;第二阶段首先将两个模型根据字的上下文生成的语义向量进行拼接,然后输入到融合层进一步提取语义信息,最后利用条件随机场得到最佳的标签序列,并且在训练过程中引入对抗训练,提高方法的泛化能力和鲁棒性。实验结果表明,该方法在SongCorpus数据集上的F1值达到81.30%,较基线模型BERT-CRF其F1值提高了3.76%。 展开更多
关键词 bert 古代汉语 命名实体识别 深度学习
在线阅读 下载PDF
基于全局语义信息的GR-BERT模型 被引量:1
17
作者 王煜华 胡俊英 +2 位作者 孙凯 常培菊 费蓉蓉 《工程数学学报》 北大核心 2025年第4期751-762,共12页
关系抽取是提取实体间关系的一项重要的自然语言处理任务。最近的研究发现,预训练BERT模型在自然语言处理任务中取得了非常好的效果。此后,诞生了大量使用预训练BERT模型处理关系抽取任务的方法,其中具有代表性的是R-BERT方法。但是,该... 关系抽取是提取实体间关系的一项重要的自然语言处理任务。最近的研究发现,预训练BERT模型在自然语言处理任务中取得了非常好的效果。此后,诞生了大量使用预训练BERT模型处理关系抽取任务的方法,其中具有代表性的是R-BERT方法。但是,该方法在实现时未考虑主语实体与宾语实体在语义上的差异,以及全局语义信息对关系抽取任务准确性的影响。通过设置两个不同的全连接层来分别提取主语实体和宾语实体的信息,从而将主语实体与宾语实体在语义上的差异引入模型的学习过程中。此外,还在原有的信息融合模块后面添加了一层带有激活函数的新全连接层来将高维全局语义信息与实体对充分融合。将融合了语义差异与全局语义信息的R-BERT简称为GR-BERT。通过在中文人物关系抽取数据集上进行实验,结果表明新提出的GR-BERT的效果较原始R-BERT取得了显著提升,从而验证了新方法GR-BERT的有效性。 展开更多
关键词 bert模型 自然语言处理 关系抽取 神经网络
在线阅读 下载PDF
一种融合BERT和注意力机制的新闻文本分类方法
18
作者 熊亿坤 付雪峰 +2 位作者 盛黄煜 胡昊 汪涛涛 《江西师范大学学报(自然科学版)》 北大核心 2025年第1期49-57,共9页
文本分类任务是在自然语言处理中的一项重要任务,旨在将给定的文本分配到预定义的不同类别或标签中.针对近年来备受关注的注意力机制和一种基于Transformer结构的预训练模型BERT,该文提出一种基于BERT-TextRCNN-Attention混合神经网络... 文本分类任务是在自然语言处理中的一项重要任务,旨在将给定的文本分配到预定义的不同类别或标签中.针对近年来备受关注的注意力机制和一种基于Transformer结构的预训练模型BERT,该文提出一种基于BERT-TextRCNN-Attention混合神经网络的新闻文本分类方法.为了增强文本的特征表示和模型的分类效果,该分类方法首先使用BERT预训练模型对文本进行预训练,并作为TextRCNN的词向量嵌入,其次采用TextRCNN模型和注意力机制进一步对文本的上下文特征和局部关键特征进行提取,再对新闻文本进行分类;最后在THUCNews数据集上进行对比实验.实验结果表明:该文提出方法在准确率和F_(1)值上比Transformer、TextRNN、TextCNN、DPCNN等文本分类模型均有所提升. 展开更多
关键词 bert模型 基于卷积神经网络的文本分类模型 注意力机制 新闻文本分类
在线阅读 下载PDF
融合BERT与X-means算法的微博舆情热度分析预测模型
19
作者 蒋章涛 李欣 +1 位作者 张士豪 赵心阳 《计算机应用》 北大核心 2025年第10期3138-3145,共8页
在微博等社交媒体的舆情发现和预测中,网络水军制造的“假热点”会影响分析准确性。为真实反映微博舆情热度,提出一种融合BERT(Bidirectional Encoder Representations from Transformers)和X-means算法的微博舆情热度分析预测模型BXpre... 在微博等社交媒体的舆情发现和预测中,网络水军制造的“假热点”会影响分析准确性。为真实反映微博舆情热度,提出一种融合BERT(Bidirectional Encoder Representations from Transformers)和X-means算法的微博舆情热度分析预测模型BXpre,旨在融合微博参与用户的属性特征与热度变化的时域特征,以提高热度预测的准确性。首先,对微博原文和互动用户的数据进行预处理,利用微调后的StructBERT模型对这些数据分类,从而确定参与互动的用户与微博原文的关联度,作为用户对该微博热度增长的贡献度权重计算的参考值;其次,使用X-means算法,以互动用户的特征为依据进行聚类,基于所得聚集态的同质性特征过滤水军,并引入针对水军样本的权重惩罚机制,结合标签关联度,进一步构建微博热度指标模型;最后,通过计算先验热度值随时间变化的二阶导数与真实数据的余弦相似度预测未来微博热度变化。实验结果表明,BXpre在不同用户量级下输出的微博舆情热度排序结果更贴近真实数据,在混合量级测试条件下,BXpre的预测相关性指标达到了90.88%,相较于基于长短期记忆(LSTM)网络、极限梯度提升(XGBoost)算法和时序差值排序(TDR)的3种传统方法,分别提升了12.71、14.80和11.30个百分点;相较于ChatGPT和文心一言,分别提升了9.76和11.95个百分点。 展开更多
关键词 微博舆情热度分析预测 bert模型 X-means算法 水军识别 社交网络分析
在线阅读 下载PDF
融合BERT BiLSTM CRF的城市内涝灾害风险要素识别方法研究 被引量:1
20
作者 张乐 张海龙 +1 位作者 李锋 吴敏 《安全与环境学报》 北大核心 2025年第8期3176-3188,共13页
为了实现在城市内涝舆情信息中快速、精准地识别相关风险要素,首先基于新浪微博平台,对用户评论信息及媒体发布信息进行采集、整理及标注,构建了城市内涝灾害事件语料数据集。进而针对城市内涝舆情信息格式不统一、语义复杂且风险要素... 为了实现在城市内涝舆情信息中快速、精准地识别相关风险要素,首先基于新浪微博平台,对用户评论信息及媒体发布信息进行采集、整理及标注,构建了城市内涝灾害事件语料数据集。进而针对城市内涝舆情信息格式不统一、语义复杂且风险要素识别的专业性、精准度要求较高等问题,结合自然灾害系统理论的风险要素框架,提出了一种基于双向编码器表征法-双向长短期记忆-条件随机场(Bidirectional Encoder Representations from Transformers-Bidirectional Long Short-Term Memory-Conditional Random Field,BERT-BiLSTM-CRF)的识别方法,并开展了一系列模型验证试验。对比试验结果表明,该模型在准确率、召回率、F_(1)三项指标上均有较好表现,其中准确率为84.62%,召回率为86.19%,F_(1)为85.35%,优于其他对比模型。消融试验结果表明,BERT预训练模型对于该模型性能有着更为显著的影响。综合上述试验结果,可以验证该模型能够有效识别城市内涝舆情信息中的各类风险要素,进而为城市内涝灾害风险管控的数智化转型提供研究依据。 展开更多
关键词 公共安全 城市内涝 双向编码器表征法 双向长短期记忆网络 条件随机场 舆情信息 风险要素识别
在线阅读 下载PDF
上一页 1 2 197 下一页 到第
使用帮助 返回顶部