The shaping quality of green ceramic balls is directly related to the efficiency and cost of later machining for the ceramic balls. Until now the shaping for green ceramic balls is still conducted by handwork. In this...The shaping quality of green ceramic balls is directly related to the efficiency and cost of later machining for the ceramic balls. Until now the shaping for green ceramic balls is still conducted by handwork. In this paper, a new shaping model for green ceramic balls was designed. In the new model, two grinding wheels with the same generator line as circular arc are mounted on symmetry, and their axes are parallel. The green ball can be put in the enveloping space formed by the two grinding wheels. The radius of generator line must be equal to or slightly greater than the final radius of the green balls, which can ensure that an ideal sphere can be enveloped by the generator of grinding wheel as grinding the green body surface with the wheels. One of the two wheels rotates in upward direction at high speed v 1, conversely, the other wheel rotates in downward direction at low speed v 2, and a cluster of compressed air is exerted on the green ball above for canceling out the force acting upon the green ball created by the action of the grinding wheel revolving at high speed and avoiding that the green ball jumps off its station. Because of the randomness of the distributions of abrasive grains on the surface of grinding wheels, the size and shape of the abrasive grains, and the posture of green body when falling into the grinding space, the values and directions of the resultant forces and torques exerted on the body, caused by the tow wheels, are random, the rotation of green body is irregular under the actions of the compressed air and the wheels. The irregularity of rotation can ensure an ideal sphere in theory. Experiment researches indicate that the new shaping model can improve the spherical deviations and the size distribution of the green ceramic balls, raise the production, and reduce the costs. The spherical deviations can be improved to 0.04 mm easily. It can be observed by SEM that there is no crack in the surface of sintered ceramic balls shaped with the new model in green blank.展开更多
The influence of the residual stress in surface of ceramic balls on the fatigue life is large, because the life of silicon nitride ball bearings is more sensitive to the load acted on the bearings than the life of all...The influence of the residual stress in surface of ceramic balls on the fatigue life is large, because the life of silicon nitride ball bearings is more sensitive to the load acted on the bearings than the life of all-steel ball bearings. In this paper, the influence of thermal stress produced in sintering and mechanical stress formed in lapping process on residual stress in surface of silicon nitride ceramic balls was discussed. The residual compress stress will be formed in the surface of silicon nitride ceramic balls after sintering. The residual tensile stress will be formed in surface of silicon nitride ceramic balls in lapping process, and the size of abrasive particle is smaller, such trend is stronger. In this paper the residual stress was measured by the xylometric measurement in which the material in surface was peeled with lapping. The distribution of residual stress in surface can be calculated with the variation in specific volume. The technological parameter with which the material was peeled by lapping was given, for minimizing the extra influence of the residual stress forming in peeling on the original residual stress in surface, the abrasive particle size would not be too small and the load impressed would not be too large. Some experimental researches on residual stress in surface of silicon nitride ceramic balls were made. The surface of silicon nitride ceramic balls presented residual compressive stress after sintering and the influence of the ball size on the residual stress is feeble. It is expected that the size of ball blank is same for achieving the same residual compressive stress in surface on balls after final machining. In lapping process, the surface of silicon nitride ceramic balls presented residual tensile stress, the larger the load which is impressed on single ball, the larger the amplitude of residual tensile stress is; the smaller the abrasive particle, the stronger the trend of plastic deformation is and the larger the amplitude of residual tensile stress is.展开更多
Silicon nitride (Si 3N 4) has been the main material for balls in ceramic ball bearings, for its lower density, high strength, high hardness, fine thermal stability and anticorrosive, and is widely used in various fie...Silicon nitride (Si 3N 4) has been the main material for balls in ceramic ball bearings, for its lower density, high strength, high hardness, fine thermal stability and anticorrosive, and is widely used in various fields, such as high speed and high temperature areojet engines, precision machine tools and chemical engineer machines. Silicon nitride ceramics is a kind of brittle and hard material that is difficult to machining. In the traditional finishing process of silicon nitride balls, balls are lapped by expensive diamond abrasive. The machining is inefficiency and the cost is high, but also lots of pits, scratch subsurface micro crazes and dislocations will be caused on the surface of the balls, the performance of the ball bearings would be declined seriously. In these year, a kind of new technology known as chemical mechanical polishing is introduced in the ultraprecision machining process of ceramic balls. In this technology, abrasives such as ZrO 2, CeO 2 whose hardness is close to or lower than the work material (Si 3N 4) are used to polishing the balls. In special slurry, these abrasives can chemo-mechanically react with the work material and environment (air or water) to generate softer material (SiO 2). And the resultants will be removed easily at 0.1 nm level. So the surface defects can be minimized, very smooth surface (Ra=4 nm) and fine sphericity (0.15~0.25 μm ) can be obtained, and the machining efficiency is also improved. The action mechanism of the abrasives in the chemical mechanical polishing process in finishing of silicon nitride ball will be introduced in this paper.展开更多
Metal phosphides have been studied as prospective anode materials for sodium-ion batteries(SIBs)due to their higher specific capacity compared to other anode materials.However,rapid capacity decay and limited cycle li...Metal phosphides have been studied as prospective anode materials for sodium-ion batteries(SIBs)due to their higher specific capacity compared to other anode materials.However,rapid capacity decay and limited cycle life caused by volume expansion and low electrical conductivity of phosphides in SIBs remain still unsolved.To address these issues,GeP_(3) was first prepared by high-energy ball milling,and then Ketjen black(KB)was introduced to synthesize composite GeP_(3)/KB anode materials under controlled milling speed and time by a secondary ball milling process.During the ball milling process,GeP_(3) and KB form strong chemical bonds,resulting in a closely bonded composite.Consequently,the GeP_(3)/KB anodes was demonstrated excellent sodium storage performance,achieving a high reversible capacity of 933.41 mAh·g^(–1) at a current density of 0.05 A·g^(–1) for a special formula of GeP_(3)/KB-600-40 sample prepared at ball milling speed of 600 r/min for 40 h.Even at a high current density of 2 A·g^(–1) over 200 cycles,the capacity remains 314.52 mAh·g^(–1) with a retention rate of 66.6%.In conclusion,this work successfully prepares GeP_(3)/KB anode-carbon composite for electrodes by high-energy ball milling,which can restrict electrode volume expansion,enhance capacity,and improve cycle stability of SIBs.展开更多
Boron has been considered a promising powdered metal fuel for enhancing composite propellants'energy output due to its high energy density.However,the high ignition temperature and low combustion efficiency limit ...Boron has been considered a promising powdered metal fuel for enhancing composite propellants'energy output due to its high energy density.However,the high ignition temperature and low combustion efficiency limit the application of boron powder due to the high boiling point of the boron oxide layer.Much research is ongoing to overcome these shortcomings,and one potential approach is to introduce a small quantity of metal oxide additives to promote the reaction of boron.This study prepared boron-rich fuels with 10 wt%of eight nano-metal oxide additives by mechanical ball milling.The effect of metal oxides on the thermo-oxidation,ignition,and combustion properties of boron powder was comprehensively studied by the thermogravimetric analysis(TG),the electrically heated filament setup(T-jump),and the laser-induced combustion experiments.TG experiments at 5 K/min found that Bi_(2)O_(3),MoO_(3),TiO_(2),Fe_(2)O_(3),and CuO can promote thermo-oxidation of boron.Compared to pure boron,Tonsetcan be reduced from 569℃to a minimum of 449℃(B/Bi_(2)O_(3)).Infrared temperature measurement in T-jump tests showed that when heated by an electric heating wire at rates from 1000 K/s to 25000 K/s,the ignition temperatures of B/Bi_(2)O_(3) are the lowest,even lower than the melting point of boron oxide.Ignition images and SEM for the products further showed that the high heating rate is beneficial to the rapid reaction of boron powder in the single-particle combustion state.Fuels(B/Bi_(2)O_(3),B/MoO_(3),and B/CuO)were mixed with the oxidant AP and ignited by laser to study the combustion performance.The results showed that B/CuO/AP has the largest flame area,the highest BO_(2) characteristic spectral intensity,and the largest burn rate for powder lines.To combine the advantages of CuO and Bi_(2)O_(3),binary metal oxide(CBO,mass ratio of 3:1)was prepared and the test results showed that CBO can very well improve both ignition and combustion properties of boron.Especially B/CBO/AP has the highest burn rate compared with all fuels containing other additives.It was found that multi-component metal-oxide additive can more synergistically improve the reaction characteristics of boron powder than unary additive.These findings contribute to the development of boron-rich fuels and their application in propellants.展开更多
文摘The shaping quality of green ceramic balls is directly related to the efficiency and cost of later machining for the ceramic balls. Until now the shaping for green ceramic balls is still conducted by handwork. In this paper, a new shaping model for green ceramic balls was designed. In the new model, two grinding wheels with the same generator line as circular arc are mounted on symmetry, and their axes are parallel. The green ball can be put in the enveloping space formed by the two grinding wheels. The radius of generator line must be equal to or slightly greater than the final radius of the green balls, which can ensure that an ideal sphere can be enveloped by the generator of grinding wheel as grinding the green body surface with the wheels. One of the two wheels rotates in upward direction at high speed v 1, conversely, the other wheel rotates in downward direction at low speed v 2, and a cluster of compressed air is exerted on the green ball above for canceling out the force acting upon the green ball created by the action of the grinding wheel revolving at high speed and avoiding that the green ball jumps off its station. Because of the randomness of the distributions of abrasive grains on the surface of grinding wheels, the size and shape of the abrasive grains, and the posture of green body when falling into the grinding space, the values and directions of the resultant forces and torques exerted on the body, caused by the tow wheels, are random, the rotation of green body is irregular under the actions of the compressed air and the wheels. The irregularity of rotation can ensure an ideal sphere in theory. Experiment researches indicate that the new shaping model can improve the spherical deviations and the size distribution of the green ceramic balls, raise the production, and reduce the costs. The spherical deviations can be improved to 0.04 mm easily. It can be observed by SEM that there is no crack in the surface of sintered ceramic balls shaped with the new model in green blank.
文摘The influence of the residual stress in surface of ceramic balls on the fatigue life is large, because the life of silicon nitride ball bearings is more sensitive to the load acted on the bearings than the life of all-steel ball bearings. In this paper, the influence of thermal stress produced in sintering and mechanical stress formed in lapping process on residual stress in surface of silicon nitride ceramic balls was discussed. The residual compress stress will be formed in the surface of silicon nitride ceramic balls after sintering. The residual tensile stress will be formed in surface of silicon nitride ceramic balls in lapping process, and the size of abrasive particle is smaller, such trend is stronger. In this paper the residual stress was measured by the xylometric measurement in which the material in surface was peeled with lapping. The distribution of residual stress in surface can be calculated with the variation in specific volume. The technological parameter with which the material was peeled by lapping was given, for minimizing the extra influence of the residual stress forming in peeling on the original residual stress in surface, the abrasive particle size would not be too small and the load impressed would not be too large. Some experimental researches on residual stress in surface of silicon nitride ceramic balls were made. The surface of silicon nitride ceramic balls presented residual compressive stress after sintering and the influence of the ball size on the residual stress is feeble. It is expected that the size of ball blank is same for achieving the same residual compressive stress in surface on balls after final machining. In lapping process, the surface of silicon nitride ceramic balls presented residual tensile stress, the larger the load which is impressed on single ball, the larger the amplitude of residual tensile stress is; the smaller the abrasive particle, the stronger the trend of plastic deformation is and the larger the amplitude of residual tensile stress is.
文摘Silicon nitride (Si 3N 4) has been the main material for balls in ceramic ball bearings, for its lower density, high strength, high hardness, fine thermal stability and anticorrosive, and is widely used in various fields, such as high speed and high temperature areojet engines, precision machine tools and chemical engineer machines. Silicon nitride ceramics is a kind of brittle and hard material that is difficult to machining. In the traditional finishing process of silicon nitride balls, balls are lapped by expensive diamond abrasive. The machining is inefficiency and the cost is high, but also lots of pits, scratch subsurface micro crazes and dislocations will be caused on the surface of the balls, the performance of the ball bearings would be declined seriously. In these year, a kind of new technology known as chemical mechanical polishing is introduced in the ultraprecision machining process of ceramic balls. In this technology, abrasives such as ZrO 2, CeO 2 whose hardness is close to or lower than the work material (Si 3N 4) are used to polishing the balls. In special slurry, these abrasives can chemo-mechanically react with the work material and environment (air or water) to generate softer material (SiO 2). And the resultants will be removed easily at 0.1 nm level. So the surface defects can be minimized, very smooth surface (Ra=4 nm) and fine sphericity (0.15~0.25 μm ) can be obtained, and the machining efficiency is also improved. The action mechanism of the abrasives in the chemical mechanical polishing process in finishing of silicon nitride ball will be introduced in this paper.
基金National Natural Science Foundation of China Young Scientist Fund(22105120)Shaanxi Province Qin Chuangyuan“Scientist+Engineer”Team Construction Project(2024QCY-KXJ-127)。
文摘Metal phosphides have been studied as prospective anode materials for sodium-ion batteries(SIBs)due to their higher specific capacity compared to other anode materials.However,rapid capacity decay and limited cycle life caused by volume expansion and low electrical conductivity of phosphides in SIBs remain still unsolved.To address these issues,GeP_(3) was first prepared by high-energy ball milling,and then Ketjen black(KB)was introduced to synthesize composite GeP_(3)/KB anode materials under controlled milling speed and time by a secondary ball milling process.During the ball milling process,GeP_(3) and KB form strong chemical bonds,resulting in a closely bonded composite.Consequently,the GeP_(3)/KB anodes was demonstrated excellent sodium storage performance,achieving a high reversible capacity of 933.41 mAh·g^(–1) at a current density of 0.05 A·g^(–1) for a special formula of GeP_(3)/KB-600-40 sample prepared at ball milling speed of 600 r/min for 40 h.Even at a high current density of 2 A·g^(–1) over 200 cycles,the capacity remains 314.52 mAh·g^(–1) with a retention rate of 66.6%.In conclusion,this work successfully prepares GeP_(3)/KB anode-carbon composite for electrodes by high-energy ball milling,which can restrict electrode volume expansion,enhance capacity,and improve cycle stability of SIBs.
基金State Key Laboratory of Explosion Science and Safety Protection of China (Grant No.QNKT21-8)National Natural Science Foundation of China (Grant No.12302432)to provide financial support。
文摘Boron has been considered a promising powdered metal fuel for enhancing composite propellants'energy output due to its high energy density.However,the high ignition temperature and low combustion efficiency limit the application of boron powder due to the high boiling point of the boron oxide layer.Much research is ongoing to overcome these shortcomings,and one potential approach is to introduce a small quantity of metal oxide additives to promote the reaction of boron.This study prepared boron-rich fuels with 10 wt%of eight nano-metal oxide additives by mechanical ball milling.The effect of metal oxides on the thermo-oxidation,ignition,and combustion properties of boron powder was comprehensively studied by the thermogravimetric analysis(TG),the electrically heated filament setup(T-jump),and the laser-induced combustion experiments.TG experiments at 5 K/min found that Bi_(2)O_(3),MoO_(3),TiO_(2),Fe_(2)O_(3),and CuO can promote thermo-oxidation of boron.Compared to pure boron,Tonsetcan be reduced from 569℃to a minimum of 449℃(B/Bi_(2)O_(3)).Infrared temperature measurement in T-jump tests showed that when heated by an electric heating wire at rates from 1000 K/s to 25000 K/s,the ignition temperatures of B/Bi_(2)O_(3) are the lowest,even lower than the melting point of boron oxide.Ignition images and SEM for the products further showed that the high heating rate is beneficial to the rapid reaction of boron powder in the single-particle combustion state.Fuels(B/Bi_(2)O_(3),B/MoO_(3),and B/CuO)were mixed with the oxidant AP and ignited by laser to study the combustion performance.The results showed that B/CuO/AP has the largest flame area,the highest BO_(2) characteristic spectral intensity,and the largest burn rate for powder lines.To combine the advantages of CuO and Bi_(2)O_(3),binary metal oxide(CBO,mass ratio of 3:1)was prepared and the test results showed that CBO can very well improve both ignition and combustion properties of boron.Especially B/CBO/AP has the highest burn rate compared with all fuels containing other additives.It was found that multi-component metal-oxide additive can more synergistically improve the reaction characteristics of boron powder than unary additive.These findings contribute to the development of boron-rich fuels and their application in propellants.