In this paper, a new approach of maneuvering target tracking algorithm based on the autoregressive extended Viterbi(AREV) model is proposed. In contrast to weakness of traditional constant velocity(CV) and constant ac...In this paper, a new approach of maneuvering target tracking algorithm based on the autoregressive extended Viterbi(AREV) model is proposed. In contrast to weakness of traditional constant velocity(CV) and constant acceleration(CA) models to noise effect reduction, the autoregressive(AR) part of the new model which changes the structure of state space equations is proposed. Also using a dynamic form of the state transition matrix leads to improving the rate of convergence and decreasing the noise effects. Since AR will impose the load of overmodeling to the computations, the extended Viterbi(EV) method is incorporated to AR in two cases of EV1 and EV2. According to most probable paths in the interacting multiple model(IMM) during nonmaneuvering and maneuvering parts of estimation, EV1 and EV2 respectively can decrease load of overmodeling computations and improve the AR performance. This new method is coupled with proposed detection schemes for maneuver occurrence and termination as well as for switching initializations. Appropriate design parameter values are derived for the detection schemes of maneuver occurrences and terminations. Finally, simulations demonstrate that the performance of the proposed model is better than the other older linear and also nonlinear algorithms in constant velocity motions and also in various types of maneuvers.展开更多
A combined magnetorheological damper combined with rubber spring and magnetorheological damper is addressed.This type of damping device has inherited the merits of rubber spring and the magnetorheological damper.The t...A combined magnetorheological damper combined with rubber spring and magnetorheological damper is addressed.This type of damping device has inherited the merits of rubber spring and the magnetorheological damper.The test damping device is made up of combined magnetorheological damper,amplitude controller,signal collecting device,computer software for dynamic analysis,etc.When a zeromean and non-Gaussian white noise interfere with the device,a time series autoregressive(AR) model is conducted by using the sampled experimental data.Trispectrum and its slices analysis are emerging as a new powerful technique in signal processing,which is put forward for investigating the dynamic characteristics of the magnetorheological vibrant device.The present of trispectrum and its slices analysis change with the variation of controllable working magnetic field of the damper correspondingly.It is indicated that AR trispectrum and its slices analysis methods are feasible and effective for investigation of magnetorheological vibrant device.展开更多
Objective:Near vision loss(NVL)is one of the leading causes of visual impairment worldwide,exerting a profound impact on individual quality of life and socio-economic development.This study aims to analyze the burden ...Objective:Near vision loss(NVL)is one of the leading causes of visual impairment worldwide,exerting a profound impact on individual quality of life and socio-economic development.This study aims to analyze the burden of NVL in China by sex and age groups from 1990 to 2021 and to project trends over the next 15 years.Methods:Using data from the Global Burden of Disease(GBD)2021 database,we conducted descriptive analyses of NVL prevalence in China,calculated age-standardized prevalence rates(ASPR)and age-standardized disability-adjusted life years rates(ASDR)to compare burden differences between sexes and age groups,and applied an autoregressive integrated moving average(ARIMA)model to predict NVL trends for the next 15 years.The model selection was based on best-fit criteria to ensure reliable projections.Results:From 1990 to 2021,China’s ASPR of NVL rose from 10096.24/100000 to 15624.54/100000,and ASDR increased from 101.75/100000 to 158.75/100000.In 2021,ASPR(16551.70/100000)and ASDR(167.69/100000)were higher among females than males(14686.21/100000 and 149.76/100000,respectively).China ranked highest globally in both NVL cases and disability-adjusted life years(DALYs),with female burden significantly exceeding male burden.Projections indicated this trend and sex gap will persist until 2036.Compared with 1990,the prevalence cases and DALYs increased by 239.20%and 238.82%,respectively in 2021,with the highest burden among females and the 55−59 age group.The ARIMA model predicted continued increases in prevalence and DALYs by 2036,with females maintaining a higher burden than males.Conclusion:This study reveals a marked increase in the NVL burden in China and predicts continued growth in the coming years.Public health policies should prioritize NVL prevention and control,with special attention to women and middle-aged populations to mitigate long-term societal and health impacts.展开更多
气温衍生品是天气衍生品交易中最活跃的合约之一,确定合理预测气温动态变化的模型,是气温衍生品开发设计的基础。考虑到气温在时间变化上具有趋势性、季节性和周期性等特点,文中使用了以O-U均值回复过程为基础的Continuous Time Autoreg...气温衍生品是天气衍生品交易中最活跃的合约之一,确定合理预测气温动态变化的模型,是气温衍生品开发设计的基础。考虑到气温在时间变化上具有趋势性、季节性和周期性等特点,文中使用了以O-U均值回复过程为基础的Continuous Time Autoregressive Model(CAR)模型、Seasonal Autoregressive Integrated Moving Average(SARIMA)模型和小波神经网络算法,并选择漠河、北京、乌鲁木齐、芜湖、昆明和海口具有地域性代表的城市气温进行拟合,使用无偏绝对百分比误差、绝对百分比误差和平均绝对比例误差检验指标检验了模型的预测精度。研究结果表明,小波神经网络算法在预测6个城市的无偏绝对百分比误差、绝对百分比误差和平均绝对比例误差的值最小;同时,相比CAR模型、SARIMA模型,其预测效果最优。因此,小波神经网络算法能够很好地拟合气温数据的变化,可以为我国气温天气衍生品的定价提供一定的指导。展开更多
State of charge(SOC)estimation has always been a hot topic in the field of both power battery and new energy vehicle(electric vehicle(EV),plug-in electric vehicle(PHEV)and so on).In this work,aiming at the contradicti...State of charge(SOC)estimation has always been a hot topic in the field of both power battery and new energy vehicle(electric vehicle(EV),plug-in electric vehicle(PHEV)and so on).In this work,aiming at the contradiction problem between the exact requirements of EKF(extended Kalman filter)algorithm for the battery model and the dynamic requirements of battery mode in life cycle or a charge and discharge period,a completely data-driven SOC estimation algorithm based on EKF algorithm is proposed.The innovation of this algorithm lies in that the EKF algorithm is used to get the SOC accurate estimate of the power battery online with using the observable voltage and current data information of the power battery and without knowing the internal parameter variation of the power battery.Through the combination of data-based and model-based SOC estimation method,the new method can avoid high accumulated error of traditional data-driven SOC algorithms and high dependence on battery model of most of the existing model-based SOC estimation methods,and is more suitable for the life cycle SOC estimation of the power battery operating in a complex and ever-changing environment(such as in an EV or PHEV).A series of simulation experiments illustrate better robustness and practicability of the proposed algorithm.展开更多
To improve the reliability and accuracy of the global po- sitioning system (GPS)/micro electromechanical system (MEMS)- inertial navigation system (INS) integrated navigation system, this paper proposes two diff...To improve the reliability and accuracy of the global po- sitioning system (GPS)/micro electromechanical system (MEMS)- inertial navigation system (INS) integrated navigation system, this paper proposes two different methods. Based on wavelet threshold denoising and functional coefficient autoregressive (FAR) model- ing, a combined data processing method is presented for MEMS inertial sensor, and GPS attitude information is also introduced to improve the estimation accuracy of MEMS inertial sensor errors. Then the positioning accuracy during GPS signal short outage is enhanced. To improve the positioning accuracy when a GPS signal is blocked for long time and solve the problem of the tra- ditional adaptive neuro-fuzzy inference system (ANFIS) method with poor dynamic adaptation and large calculation amount, a self-constructive ANFIS (SCANFIS) combined with the extended Kalman filter (EKF) is proposed for MEMS-INS errors modeling and predicting. Experimental road test results validate the effi- ciency of the proposed methods.展开更多
Condition assessment is one of the most significant techniques of the equipment’s health management.Also,in PHM methodology cycle,which is a developed form of CBM,condition assessment is the most important step of th...Condition assessment is one of the most significant techniques of the equipment’s health management.Also,in PHM methodology cycle,which is a developed form of CBM,condition assessment is the most important step of this cycle.In this paper,the remaining useful life of the equipment is calculated using the combination of sensor information,determination of degradation state and forecasting the proposed health index.The combination of sensor information has been carried out using a new approach to determining the probabilities in the Dempster-Shafer combination rules and fuzzy c-means clustering method.Using the simulation and forecasting of extracted vibration-based health index by autoregressive Markov regime switching(ARMRS)method,final health state is determined and the remaining useful life(RUL)is estimated.In order to evaluate the model,sensor data provided by FEMTO-ST Institute have been used.展开更多
Nonlocal continuum mechanics is a popular growing theory for investigating the dynamic behavior of Carbon nanotubes(CNTs).Estimating the nonlocal constant is a crucial step in mathematical modeling of CNTs vibration b...Nonlocal continuum mechanics is a popular growing theory for investigating the dynamic behavior of Carbon nanotubes(CNTs).Estimating the nonlocal constant is a crucial step in mathematical modeling of CNTs vibration behavior based on this theory.Accordingly,in this study a vibration-based nonlocal parameter estimation technique,which can be competitive because of its lower instrumentation and data analysis costs,is proposed.To this end,the nonlocal models of the CNT by using the linear and nonlinear theories are established.Then,time response of the CNT to impulsive force is derived by solving the governing equations numerically.By using these time responses the parametric model of the CNT is constructed via the autoregressive moving average(ARMA)method.The appropriate ARMA parameters,which are chosen by an introduced feature reduction technique,are considered features to identify the value of the nonlocal constant.In this regard,a multi-layer perceptron(MLP)network has been trained to construct the complex relation between the ARMA parameters and the nonlocal constant.After training the MLP,based on the assumed linear and nonlinear models,the ability of the proposed method is evaluated and it is shown that the nonlocal parameter can be estimated with high accuracy in the presence/absence of nonlinearity.展开更多
In order to improve the screening efficiency of vibrating screen and make vibration process smooth,a new type of magnetorheological (MR) damper was proposed. The signals of displacement in the vibration process during...In order to improve the screening efficiency of vibrating screen and make vibration process smooth,a new type of magnetorheological (MR) damper was proposed. The signals of displacement in the vibration process during the test were collected. The trispectrum model of autoregressive (AR) time series was built and the correlation dimension was used to quantify the fractal characteristics during the vibration process. The result shows that,in different working conditions,trispectrum slices are applied to obtaining the information of non-Gaussian,nonlinear amplitude?frequency characteristics of the signal. Besides,there is correlation between the correlation dimension of vibration signal and trispectrum slices,which is very important to select the optimum working parameters of the MR damper and vibrating screen. And in the experimental conditions,it is found that when the working current of MR damper is 2 A and the rotation speed of vibration motor is 800 r/min,the vibration screen reaches its maximum screening efficiency.展开更多
Network autoregression and factor model are effective methods for modeling network time series data.In this study,we propose a network autoregression model with a factor structure that incorporates a latent group stru...Network autoregression and factor model are effective methods for modeling network time series data.In this study,we propose a network autoregression model with a factor structure that incorporates a latent group structure to address nodal heterogeneity within the network.An iterative algorithm is employed to minimize a least-squares objective function,allowing for simultaneous estimation of both the parameters and the group structure.To determine the unknown number of groups and factors,a PIC criterion is introduced.Additionally,statistical inference of the estimated parameters is presented.To assess the validity of the proposed estimation and inference procedures,we conduct extensive numerical studies.We also demonstrate the utility of our model using a stock dataset obtained from the Chinese A-Share stock market.展开更多
文摘In this paper, a new approach of maneuvering target tracking algorithm based on the autoregressive extended Viterbi(AREV) model is proposed. In contrast to weakness of traditional constant velocity(CV) and constant acceleration(CA) models to noise effect reduction, the autoregressive(AR) part of the new model which changes the structure of state space equations is proposed. Also using a dynamic form of the state transition matrix leads to improving the rate of convergence and decreasing the noise effects. Since AR will impose the load of overmodeling to the computations, the extended Viterbi(EV) method is incorporated to AR in two cases of EV1 and EV2. According to most probable paths in the interacting multiple model(IMM) during nonmaneuvering and maneuvering parts of estimation, EV1 and EV2 respectively can decrease load of overmodeling computations and improve the AR performance. This new method is coupled with proposed detection schemes for maneuver occurrence and termination as well as for switching initializations. Appropriate design parameter values are derived for the detection schemes of maneuver occurrences and terminations. Finally, simulations demonstrate that the performance of the proposed model is better than the other older linear and also nonlinear algorithms in constant velocity motions and also in various types of maneuvers.
基金Project(2005H035) supported by Fujian Province of China
文摘A combined magnetorheological damper combined with rubber spring and magnetorheological damper is addressed.This type of damping device has inherited the merits of rubber spring and the magnetorheological damper.The test damping device is made up of combined magnetorheological damper,amplitude controller,signal collecting device,computer software for dynamic analysis,etc.When a zeromean and non-Gaussian white noise interfere with the device,a time series autoregressive(AR) model is conducted by using the sampled experimental data.Trispectrum and its slices analysis are emerging as a new powerful technique in signal processing,which is put forward for investigating the dynamic characteristics of the magnetorheological vibrant device.The present of trispectrum and its slices analysis change with the variation of controllable working magnetic field of the damper correspondingly.It is indicated that AR trispectrum and its slices analysis methods are feasible and effective for investigation of magnetorheological vibrant device.
基金supported by the Natural Science Foundation of Hunan Province(2023JJ30817)Hunan Provincial Natural Science Foundation-Hengyang City Joint Fund Project(2025JJ70129)+1 种基金Changsha Natural Science Foundation(kq2403057)China。
文摘Objective:Near vision loss(NVL)is one of the leading causes of visual impairment worldwide,exerting a profound impact on individual quality of life and socio-economic development.This study aims to analyze the burden of NVL in China by sex and age groups from 1990 to 2021 and to project trends over the next 15 years.Methods:Using data from the Global Burden of Disease(GBD)2021 database,we conducted descriptive analyses of NVL prevalence in China,calculated age-standardized prevalence rates(ASPR)and age-standardized disability-adjusted life years rates(ASDR)to compare burden differences between sexes and age groups,and applied an autoregressive integrated moving average(ARIMA)model to predict NVL trends for the next 15 years.The model selection was based on best-fit criteria to ensure reliable projections.Results:From 1990 to 2021,China’s ASPR of NVL rose from 10096.24/100000 to 15624.54/100000,and ASDR increased from 101.75/100000 to 158.75/100000.In 2021,ASPR(16551.70/100000)and ASDR(167.69/100000)were higher among females than males(14686.21/100000 and 149.76/100000,respectively).China ranked highest globally in both NVL cases and disability-adjusted life years(DALYs),with female burden significantly exceeding male burden.Projections indicated this trend and sex gap will persist until 2036.Compared with 1990,the prevalence cases and DALYs increased by 239.20%and 238.82%,respectively in 2021,with the highest burden among females and the 55−59 age group.The ARIMA model predicted continued increases in prevalence and DALYs by 2036,with females maintaining a higher burden than males.Conclusion:This study reveals a marked increase in the NVL burden in China and predicts continued growth in the coming years.Public health policies should prioritize NVL prevention and control,with special attention to women and middle-aged populations to mitigate long-term societal and health impacts.
基金Projects(51607122,51378350)supported by the National Natural Science Foundation of ChinaProject(BGRIMM-KZSKL-2018-02)supported by the State Key Laboratory of Process Automation in Mining&Metallurgy/Beijing Key Laboratory of Process Automation in Mining&Metallurgy Research,China+4 种基金Project(18JCTPJC63000)supported by Tianjin Enterprise Science and Technology Commissioner Project,ChinaProject(2017KJ094,2017KJ093)supported by Tianjin Education Commission Scientific Research Plan Project,ChinaProject(17ZLZXZF00280)supported by Tianjin Science and Technology Project,ChinaProject(18JCQNJC77200)supported by Tianjin Province Science and Technology projects,ChinaProject(2017YFB1103003,2016YFB1100501)supported by National Key Research and Development Plan,China
文摘State of charge(SOC)estimation has always been a hot topic in the field of both power battery and new energy vehicle(electric vehicle(EV),plug-in electric vehicle(PHEV)and so on).In this work,aiming at the contradiction problem between the exact requirements of EKF(extended Kalman filter)algorithm for the battery model and the dynamic requirements of battery mode in life cycle or a charge and discharge period,a completely data-driven SOC estimation algorithm based on EKF algorithm is proposed.The innovation of this algorithm lies in that the EKF algorithm is used to get the SOC accurate estimate of the power battery online with using the observable voltage and current data information of the power battery and without knowing the internal parameter variation of the power battery.Through the combination of data-based and model-based SOC estimation method,the new method can avoid high accumulated error of traditional data-driven SOC algorithms and high dependence on battery model of most of the existing model-based SOC estimation methods,and is more suitable for the life cycle SOC estimation of the power battery operating in a complex and ever-changing environment(such as in an EV or PHEV).A series of simulation experiments illustrate better robustness and practicability of the proposed algorithm.
基金supported by the National Natural Science Foundation of China (60902055)
文摘To improve the reliability and accuracy of the global po- sitioning system (GPS)/micro electromechanical system (MEMS)- inertial navigation system (INS) integrated navigation system, this paper proposes two different methods. Based on wavelet threshold denoising and functional coefficient autoregressive (FAR) model- ing, a combined data processing method is presented for MEMS inertial sensor, and GPS attitude information is also introduced to improve the estimation accuracy of MEMS inertial sensor errors. Then the positioning accuracy during GPS signal short outage is enhanced. To improve the positioning accuracy when a GPS signal is blocked for long time and solve the problem of the tra- ditional adaptive neuro-fuzzy inference system (ANFIS) method with poor dynamic adaptation and large calculation amount, a self-constructive ANFIS (SCANFIS) combined with the extended Kalman filter (EKF) is proposed for MEMS-INS errors modeling and predicting. Experimental road test results validate the effi- ciency of the proposed methods.
文摘Condition assessment is one of the most significant techniques of the equipment’s health management.Also,in PHM methodology cycle,which is a developed form of CBM,condition assessment is the most important step of this cycle.In this paper,the remaining useful life of the equipment is calculated using the combination of sensor information,determination of degradation state and forecasting the proposed health index.The combination of sensor information has been carried out using a new approach to determining the probabilities in the Dempster-Shafer combination rules and fuzzy c-means clustering method.Using the simulation and forecasting of extracted vibration-based health index by autoregressive Markov regime switching(ARMRS)method,final health state is determined and the remaining useful life(RUL)is estimated.In order to evaluate the model,sensor data provided by FEMTO-ST Institute have been used.
文摘Nonlocal continuum mechanics is a popular growing theory for investigating the dynamic behavior of Carbon nanotubes(CNTs).Estimating the nonlocal constant is a crucial step in mathematical modeling of CNTs vibration behavior based on this theory.Accordingly,in this study a vibration-based nonlocal parameter estimation technique,which can be competitive because of its lower instrumentation and data analysis costs,is proposed.To this end,the nonlocal models of the CNT by using the linear and nonlinear theories are established.Then,time response of the CNT to impulsive force is derived by solving the governing equations numerically.By using these time responses the parametric model of the CNT is constructed via the autoregressive moving average(ARMA)method.The appropriate ARMA parameters,which are chosen by an introduced feature reduction technique,are considered features to identify the value of the nonlocal constant.In this regard,a multi-layer perceptron(MLP)network has been trained to construct the complex relation between the ARMA parameters and the nonlocal constant.After training the MLP,based on the assumed linear and nonlinear models,the ability of the proposed method is evaluated and it is shown that the nonlocal parameter can be estimated with high accuracy in the presence/absence of nonlinearity.
基金Project(50975098) supported by the National Natural Science Foundation of ChinaProject(2008HZ0002-1) supported by the Major Scientific and Technological Program of Fujian Province,China
文摘In order to improve the screening efficiency of vibrating screen and make vibration process smooth,a new type of magnetorheological (MR) damper was proposed. The signals of displacement in the vibration process during the test were collected. The trispectrum model of autoregressive (AR) time series was built and the correlation dimension was used to quantify the fractal characteristics during the vibration process. The result shows that,in different working conditions,trispectrum slices are applied to obtaining the information of non-Gaussian,nonlinear amplitude?frequency characteristics of the signal. Besides,there is correlation between the correlation dimension of vibration signal and trispectrum slices,which is very important to select the optimum working parameters of the MR damper and vibrating screen. And in the experimental conditions,it is found that when the working current of MR damper is 2 A and the rotation speed of vibration motor is 800 r/min,the vibration screen reaches its maximum screening efficiency.
基金Supported by National Natural Science Foundation of China(72222009,71991472)。
文摘Network autoregression and factor model are effective methods for modeling network time series data.In this study,we propose a network autoregression model with a factor structure that incorporates a latent group structure to address nodal heterogeneity within the network.An iterative algorithm is employed to minimize a least-squares objective function,allowing for simultaneous estimation of both the parameters and the group structure.To determine the unknown number of groups and factors,a PIC criterion is introduced.Additionally,statistical inference of the estimated parameters is presented.To assess the validity of the proposed estimation and inference procedures,we conduct extensive numerical studies.We also demonstrate the utility of our model using a stock dataset obtained from the Chinese A-Share stock market.