Objective Autism spectrum disorder(ASD)is a neurodevelopmental condition characterized by difficulties with communication and social interaction,restricted and repetitive behaviors.Previous studies have indicated that...Objective Autism spectrum disorder(ASD)is a neurodevelopmental condition characterized by difficulties with communication and social interaction,restricted and repetitive behaviors.Previous studies have indicated that individuals with ASD exhibit early and lifelong attention deficits,which are closely related to the core symptoms of ASD.Basic visual attention processes may provide a critical foundation for their social communication and interaction abilities.Therefore,this study explores the behavior of children with ASD in capturing attention to changes in topological properties.Methods Our study recruited twenty-seven ASD children diagnosed by professional clinicians according to DSM-5 and twenty-eight typically developing(TD)age-matched controls.In an attention capture task,we recorded the saccadic behaviors of children with ASD and TD in response to topological change(TC)and non-topological change(nTC)stimuli.Saccadic reaction time(SRT),visual search time(VS),and first fixation dwell time(FFDT)were used as indicators of attentional bias.Pearson correlation tests between the clinical assessment scales and attentional bias were conducted.Results This study found that TD children had significantly faster SRT(P<0.05)and VS(P<0.05)for the TC stimuli compared to the nTC stimuli,while the children with ASD did not exhibit significant differences in either measure(P>0.05).Additionally,ASD children demonstrated significantly less attention towards the TC targets(measured by FFDT),in comparison to TD children(P<0.05).Furthermore,ASD children exhibited a significant negative linear correlation between their attentional bias(measured by VS)and their scores on the compulsive subscale(P<0.05).Conclusion The results suggest that children with ASD have difficulty shifting their attention to objects with topological changes during change detection.This atypical attention may affect the child’s cognitive and behavioral development,thereby impacting their social communication and interaction.In sum,our findings indicate that difficulties in attentional capture by TC may be a key feature of ASD.展开更多
Drone swarm systems,equipped with photoelectric imaging and intelligent target perception,are essential for reconnaissance and strike missions in complex and high-risk environments.They excel in information sharing,an...Drone swarm systems,equipped with photoelectric imaging and intelligent target perception,are essential for reconnaissance and strike missions in complex and high-risk environments.They excel in information sharing,anti-jamming capabilities,and combat performance,making them critical for future warfare.However,varied perspectives in collaborative combat scenarios pose challenges to object detection,hindering traditional detection algorithms and reducing accuracy.Limited angle-prior data and sparse samples further complicate detection.This paper presents the Multi-View Collaborative Detection System,which tackles the challenges of multi-view object detection in collaborative combat scenarios.The system is designed to enhance multi-view image generation and detection algorithms,thereby improving the accuracy and efficiency of object detection across varying perspectives.First,an observation model for three-dimensional targets through line-of-sight angle transformation is constructed,and a multi-view image generation algorithm based on the Pix2Pix network is designed.For object detection,YOLOX is utilized,and a deep feature extraction network,BA-RepCSPDarknet,is developed to address challenges related to small target scale and feature extraction challenges.Additionally,a feature fusion network NS-PAFPN is developed to mitigate the issue of deep feature map information loss in UAV images.A visual attention module(BAM)is employed to manage appearance differences under varying angles,while a feature mapping module(DFM)prevents fine-grained feature loss.These advancements lead to the development of BA-YOLOX,a multi-view object detection network model suitable for drone platforms,enhancing accuracy and effectively targeting small objects.展开更多
Hypersonic Glide Vehicles(HGVs)are advanced aircraft that can achieve extremely high speeds(generally over 5 Mach)and maneuverability within the Earth's atmosphere.HGV trajectory prediction is crucial for effectiv...Hypersonic Glide Vehicles(HGVs)are advanced aircraft that can achieve extremely high speeds(generally over 5 Mach)and maneuverability within the Earth's atmosphere.HGV trajectory prediction is crucial for effective defense planning and interception strategies.In recent years,HGV trajectory prediction methods based on deep learning have the great potential to significantly enhance prediction accuracy and efficiency.However,it's still challenging to strike a balance between improving prediction performance and reducing computation costs of the deep learning trajectory prediction models.To solve this problem,we propose a new deep learning framework(FECA-LSMN)for efficient HGV trajectory prediction.The model first uses a Frequency Enhanced Channel Attention(FECA)module to facilitate the fusion of different HGV trajectory features,and then subsequently employs a Light Sampling-oriented Multi-Layer Perceptron Network(LSMN)based on simple MLP-based structures to extract long/shortterm HGV trajectory features for accurate trajectory prediction.Also,we employ a new data normalization method called reversible instance normalization(RevIN)to enhance the prediction accuracy and training stability of the network.Compared to other popular trajectory prediction models based on LSTM,GRU and Transformer,our FECA-LSMN model achieves leading or comparable performance in terms of RMSE,MAE and MAPE metrics while demonstrating notably faster computation time.The ablation experiments show that the incorporation of the FECA module significantly improves the prediction performance of the network.The RevIN data normalization technique outperforms traditional min-max normalization as well.展开更多
提出一种基于SABO-GRU-Attention(subtraction average based optimizer-gate recurrent unitattention)的锂电池SOC(state of charge)估计方法。采用基于平均减法优化算法自适应更新GRU神经网络的超参数,融合SE(squeeze and excitation...提出一种基于SABO-GRU-Attention(subtraction average based optimizer-gate recurrent unitattention)的锂电池SOC(state of charge)估计方法。采用基于平均减法优化算法自适应更新GRU神经网络的超参数,融合SE(squeeze and excitation)注意力机制自适应分配各通道权重,提高学习效率。对马里兰大学电池数据集进行预处理,输入电压、电流参数,进行锂电池充放电仿真实验,并搭建锂电池荷电状态实验平台进行储能锂电池充放电实验。结果表明,提出的SOC神经网络估计模型明显优于LSTM、GRU以及PSO-GRU等模型,具有较高的估计精度与应用价值。展开更多
In a recent publication,Hu et al.(2023)have reported that individuals with high trait anxiety exhibit attentional deficits characterized by reduced inhibition of distractors and delayed attentional selection of target...In a recent publication,Hu et al.(2023)have reported that individuals with high trait anxiety exhibit attentional deficits characterized by reduced inhibition of distractors and delayed attentional selection of targets,indicating impaired top-down attentional control.This commentary underscores their significant contributions to the cognitive theory of anxiety.Based on their findings,we propose a novel training approach called attentional inhibition training(AIT),aimed at improving top-down attentional control to alleviate symptoms of anxiety.Furthermore,we explore the potential application of non-invasive transcranial magnetic stimulation(TMS)for rapidly enhancing attentional control function.展开更多
Landfill leaks pose a serious threat to environmental health,risking the contamination of both groundwater and soil resources.Accurate investigation of these sites is essential for implementing effective prevention an...Landfill leaks pose a serious threat to environmental health,risking the contamination of both groundwater and soil resources.Accurate investigation of these sites is essential for implementing effective prevention and control measures.The self-potential(SP)stands out for its sensitivity to contamination plumes,offering a solution for monitoring and detecting the movement and seepage of subsurface pollutants.However,traditional SP inversion techniques heavily rely on precise subsurface resistivity information.In this study,we propose the Attention U-Net deep learning network for rapid SP inversion.By incorporating an attention mechanism,this algorithm effectively learns the relationship between array-style SP data and the location and extent of subsurface contaminated sources.We designed a synthetic landfill model with a heterogeneous resistivity structure to assess the performance of Attention U-Net deep learning network.Additionally,we conducted further validation using a laboratory model to assess its practical applicability.The results demonstrate that the algorithm is not solely dependent on resistivity information,enabling effective locating of the source distribution,even in models with intricate subsurface structures.Our work provides a promising tool for SP data processing,enhancing the applicability of this method in the field of near-subsurface environmental monitoring.展开更多
电力市场环境下,精准的短期负荷预测可以保障电网安全稳定运行,但电价的实时波动增加了负荷变化的复杂性,加大了预测难度。针对这一问题,采用最大信息系数法分析电价及历史负荷与当前时刻负荷的相关性,为预测模型输入特征的确定提供依...电力市场环境下,精准的短期负荷预测可以保障电网安全稳定运行,但电价的实时波动增加了负荷变化的复杂性,加大了预测难度。针对这一问题,采用最大信息系数法分析电价及历史负荷与当前时刻负荷的相关性,为预测模型输入特征的确定提供依据。在此基础上,提出了基于Attention-LSTM (attention long short-term memory,Attention-LSTM)网络的短期负荷预测模型。该模型充分利用负荷的时序特性,并采用Attention机制突出对负荷预测起到关键作用的输入特征。以澳大利亚某地区真实数据为算例,分别应用Attention-LSTM模型与其他模型进行仿真实验。结果表明,所提方法在预测精度和算法鲁棒性方面均优于其他模型。展开更多
为提高新能源汽车领域术语抽取准确率,面向新能源汽车专利文本提出一种领域术语抽取模型。传统的领域术语抽取方法过度依赖人工定义特征和领域知识,无法自动挖掘隐含特征,其识别性能过度依赖所选特征的质量。从深度学习的角度出发,提出...为提高新能源汽车领域术语抽取准确率,面向新能源汽车专利文本提出一种领域术语抽取模型。传统的领域术语抽取方法过度依赖人工定义特征和领域知识,无法自动挖掘隐含特征,其识别性能过度依赖所选特征的质量。从深度学习的角度出发,提出了一种基于attention的双向长短时记忆网络(bidirectional long short-term memory,BLSTM)与条件随机场(conditional random fields,CRF)相结合的领域术语抽取模型(BLSTM_attention_CRF模型),并使用基于词典与规则相结合的方法对结果进行校正,准确率可达到86%以上,方法切实可行。展开更多
文摘Objective Autism spectrum disorder(ASD)is a neurodevelopmental condition characterized by difficulties with communication and social interaction,restricted and repetitive behaviors.Previous studies have indicated that individuals with ASD exhibit early and lifelong attention deficits,which are closely related to the core symptoms of ASD.Basic visual attention processes may provide a critical foundation for their social communication and interaction abilities.Therefore,this study explores the behavior of children with ASD in capturing attention to changes in topological properties.Methods Our study recruited twenty-seven ASD children diagnosed by professional clinicians according to DSM-5 and twenty-eight typically developing(TD)age-matched controls.In an attention capture task,we recorded the saccadic behaviors of children with ASD and TD in response to topological change(TC)and non-topological change(nTC)stimuli.Saccadic reaction time(SRT),visual search time(VS),and first fixation dwell time(FFDT)were used as indicators of attentional bias.Pearson correlation tests between the clinical assessment scales and attentional bias were conducted.Results This study found that TD children had significantly faster SRT(P<0.05)and VS(P<0.05)for the TC stimuli compared to the nTC stimuli,while the children with ASD did not exhibit significant differences in either measure(P>0.05).Additionally,ASD children demonstrated significantly less attention towards the TC targets(measured by FFDT),in comparison to TD children(P<0.05).Furthermore,ASD children exhibited a significant negative linear correlation between their attentional bias(measured by VS)and their scores on the compulsive subscale(P<0.05).Conclusion The results suggest that children with ASD have difficulty shifting their attention to objects with topological changes during change detection.This atypical attention may affect the child’s cognitive and behavioral development,thereby impacting their social communication and interaction.In sum,our findings indicate that difficulties in attentional capture by TC may be a key feature of ASD.
基金supported by the Natural Science Foundation of China,Grant No.62103052.
文摘Drone swarm systems,equipped with photoelectric imaging and intelligent target perception,are essential for reconnaissance and strike missions in complex and high-risk environments.They excel in information sharing,anti-jamming capabilities,and combat performance,making them critical for future warfare.However,varied perspectives in collaborative combat scenarios pose challenges to object detection,hindering traditional detection algorithms and reducing accuracy.Limited angle-prior data and sparse samples further complicate detection.This paper presents the Multi-View Collaborative Detection System,which tackles the challenges of multi-view object detection in collaborative combat scenarios.The system is designed to enhance multi-view image generation and detection algorithms,thereby improving the accuracy and efficiency of object detection across varying perspectives.First,an observation model for three-dimensional targets through line-of-sight angle transformation is constructed,and a multi-view image generation algorithm based on the Pix2Pix network is designed.For object detection,YOLOX is utilized,and a deep feature extraction network,BA-RepCSPDarknet,is developed to address challenges related to small target scale and feature extraction challenges.Additionally,a feature fusion network NS-PAFPN is developed to mitigate the issue of deep feature map information loss in UAV images.A visual attention module(BAM)is employed to manage appearance differences under varying angles,while a feature mapping module(DFM)prevents fine-grained feature loss.These advancements lead to the development of BA-YOLOX,a multi-view object detection network model suitable for drone platforms,enhancing accuracy and effectively targeting small objects.
文摘Hypersonic Glide Vehicles(HGVs)are advanced aircraft that can achieve extremely high speeds(generally over 5 Mach)and maneuverability within the Earth's atmosphere.HGV trajectory prediction is crucial for effective defense planning and interception strategies.In recent years,HGV trajectory prediction methods based on deep learning have the great potential to significantly enhance prediction accuracy and efficiency.However,it's still challenging to strike a balance between improving prediction performance and reducing computation costs of the deep learning trajectory prediction models.To solve this problem,we propose a new deep learning framework(FECA-LSMN)for efficient HGV trajectory prediction.The model first uses a Frequency Enhanced Channel Attention(FECA)module to facilitate the fusion of different HGV trajectory features,and then subsequently employs a Light Sampling-oriented Multi-Layer Perceptron Network(LSMN)based on simple MLP-based structures to extract long/shortterm HGV trajectory features for accurate trajectory prediction.Also,we employ a new data normalization method called reversible instance normalization(RevIN)to enhance the prediction accuracy and training stability of the network.Compared to other popular trajectory prediction models based on LSTM,GRU and Transformer,our FECA-LSMN model achieves leading or comparable performance in terms of RMSE,MAE and MAPE metrics while demonstrating notably faster computation time.The ablation experiments show that the incorporation of the FECA module significantly improves the prediction performance of the network.The RevIN data normalization technique outperforms traditional min-max normalization as well.
文摘提出一种基于SABO-GRU-Attention(subtraction average based optimizer-gate recurrent unitattention)的锂电池SOC(state of charge)估计方法。采用基于平均减法优化算法自适应更新GRU神经网络的超参数,融合SE(squeeze and excitation)注意力机制自适应分配各通道权重,提高学习效率。对马里兰大学电池数据集进行预处理,输入电压、电流参数,进行锂电池充放电仿真实验,并搭建锂电池荷电状态实验平台进行储能锂电池充放电实验。结果表明,提出的SOC神经网络估计模型明显优于LSTM、GRU以及PSO-GRU等模型,具有较高的估计精度与应用价值。
文摘In a recent publication,Hu et al.(2023)have reported that individuals with high trait anxiety exhibit attentional deficits characterized by reduced inhibition of distractors and delayed attentional selection of targets,indicating impaired top-down attentional control.This commentary underscores their significant contributions to the cognitive theory of anxiety.Based on their findings,we propose a novel training approach called attentional inhibition training(AIT),aimed at improving top-down attentional control to alleviate symptoms of anxiety.Furthermore,we explore the potential application of non-invasive transcranial magnetic stimulation(TMS)for rapidly enhancing attentional control function.
基金Projects(42174170,41874145,72088101)supported by the National Natural Science Foundation of ChinaProject(CX20200228)supported by the Hunan Provincial Innovation Foundation for Postgraduate,China。
文摘Landfill leaks pose a serious threat to environmental health,risking the contamination of both groundwater and soil resources.Accurate investigation of these sites is essential for implementing effective prevention and control measures.The self-potential(SP)stands out for its sensitivity to contamination plumes,offering a solution for monitoring and detecting the movement and seepage of subsurface pollutants.However,traditional SP inversion techniques heavily rely on precise subsurface resistivity information.In this study,we propose the Attention U-Net deep learning network for rapid SP inversion.By incorporating an attention mechanism,this algorithm effectively learns the relationship between array-style SP data and the location and extent of subsurface contaminated sources.We designed a synthetic landfill model with a heterogeneous resistivity structure to assess the performance of Attention U-Net deep learning network.Additionally,we conducted further validation using a laboratory model to assess its practical applicability.The results demonstrate that the algorithm is not solely dependent on resistivity information,enabling effective locating of the source distribution,even in models with intricate subsurface structures.Our work provides a promising tool for SP data processing,enhancing the applicability of this method in the field of near-subsurface environmental monitoring.
文摘电力市场环境下,精准的短期负荷预测可以保障电网安全稳定运行,但电价的实时波动增加了负荷变化的复杂性,加大了预测难度。针对这一问题,采用最大信息系数法分析电价及历史负荷与当前时刻负荷的相关性,为预测模型输入特征的确定提供依据。在此基础上,提出了基于Attention-LSTM (attention long short-term memory,Attention-LSTM)网络的短期负荷预测模型。该模型充分利用负荷的时序特性,并采用Attention机制突出对负荷预测起到关键作用的输入特征。以澳大利亚某地区真实数据为算例,分别应用Attention-LSTM模型与其他模型进行仿真实验。结果表明,所提方法在预测精度和算法鲁棒性方面均优于其他模型。
文摘为提高新能源汽车领域术语抽取准确率,面向新能源汽车专利文本提出一种领域术语抽取模型。传统的领域术语抽取方法过度依赖人工定义特征和领域知识,无法自动挖掘隐含特征,其识别性能过度依赖所选特征的质量。从深度学习的角度出发,提出了一种基于attention的双向长短时记忆网络(bidirectional long short-term memory,BLSTM)与条件随机场(conditional random fields,CRF)相结合的领域术语抽取模型(BLSTM_attention_CRF模型),并使用基于词典与规则相结合的方法对结果进行校正,准确率可达到86%以上,方法切实可行。