The basic difference non-equal interval model GM(1,1) in grey theory was used to fit and forecast data series with non-equal lengths and different inertias, acquired from oil monitoring of internal combustion engines....The basic difference non-equal interval model GM(1,1) in grey theory was used to fit and forecast data series with non-equal lengths and different inertias, acquired from oil monitoring of internal combustion engines. The fitted and forecasted results show that the length or inertia of a sequence affects its precision very much, i.e. the bigger the inertia of a sequence is, or the shorter the length of a series is, the less the errors of fitted and forecasted results are. Based on the research results, it is suggested that short series should be applied to be fitted and forecasted; for longer series, the newer datum should be applied instead of the older datum to be analyzed by non- equalinterval GM(1,1) to improve the forecasted and fitted precision, and that data sequence should be verified to satisfy the conditions of grey forecasting.展开更多
The finite element analysis of the fretting behavior between a cylinder block and a main bearing cap is presented. The stresses, relative fretting slip, frettin g friction work parameter W and crack initiation locatio...The finite element analysis of the fretting behavior between a cylinder block and a main bearing cap is presented. The stresses, relative fretting slip, frettin g friction work parameter W and crack initiation location parameter Gon the fretting contact surface of the cylinder block are obtained and analyzed. It shows that the fretting fatigue problem of the cylinder block can be quantitat ively explained by WorG. The effects of pretightening force, friction factor and material combination of the cylinder block and the main bearing cap are studied. The computational results indicate that the fretting fatigue of the cylinder block can be allayed by increasing the elastic modulus of the cylinder block, but not by changing the other two factors.展开更多
文摘The basic difference non-equal interval model GM(1,1) in grey theory was used to fit and forecast data series with non-equal lengths and different inertias, acquired from oil monitoring of internal combustion engines. The fitted and forecasted results show that the length or inertia of a sequence affects its precision very much, i.e. the bigger the inertia of a sequence is, or the shorter the length of a series is, the less the errors of fitted and forecasted results are. Based on the research results, it is suggested that short series should be applied to be fitted and forecasted; for longer series, the newer datum should be applied instead of the older datum to be analyzed by non- equalinterval GM(1,1) to improve the forecasted and fitted precision, and that data sequence should be verified to satisfy the conditions of grey forecasting.
文摘The finite element analysis of the fretting behavior between a cylinder block and a main bearing cap is presented. The stresses, relative fretting slip, frettin g friction work parameter W and crack initiation location parameter Gon the fretting contact surface of the cylinder block are obtained and analyzed. It shows that the fretting fatigue problem of the cylinder block can be quantitat ively explained by WorG. The effects of pretightening force, friction factor and material combination of the cylinder block and the main bearing cap are studied. The computational results indicate that the fretting fatigue of the cylinder block can be allayed by increasing the elastic modulus of the cylinder block, but not by changing the other two factors.