针对二进制域上现有求逆算法计算量大、并行度小、速度慢的缺点进行改进,基于二元Euclidean算法提出了改进,设计了相应的乘法器硬件结构,并且分析了其运算效能和资源占用情况。将此求逆计算器的并行改进算法使用Verilog语言编程实现,利...针对二进制域上现有求逆算法计算量大、并行度小、速度慢的缺点进行改进,基于二元Euclidean算法提出了改进,设计了相应的乘法器硬件结构,并且分析了其运算效能和资源占用情况。将此求逆计算器的并行改进算法使用Verilog语言编程实现,利用Xilinx ISE 12.4对整个求逆算法综合仿真(行为级),在Xilinx Virtex-5 XC5VFX70T的硬件平台上验证求逆算法的运算效率,结果表明对求逆算法的改进有效地提高了求逆运算的速度。展开更多
Aqueous E pH Diagram is an essential tool for analyzing hydrometallurgical and corrosion processes. Due to the requirements for environmental protection and energy saving in recent years, waste water processing a...Aqueous E pH Diagram is an essential tool for analyzing hydrometallurgical and corrosion processes. Due to the requirements for environmental protection and energy saving in recent years, waste water processing and hydrometallurgical process of concentrate have been greatly developed. The construction of E pH diagrams has turned to multi component systems. However, there are some limits in plotting such diagrams. There is only one diagram for one multi component system, which can not reflect the truth of the aqueous reaction. In the paper, a new computation method is proposed to construct E pH diagrams. Component activity term is used to determine the boundary of stable areas. For the multi component systems, different atom ratios of elements have been taken into account. M S H 2O system is chosen to study since it is of importance in metallurgical solution. Compared with conventional methods, the algorithm is simple and conforms to real conditions.展开更多
文摘针对二进制域上现有求逆算法计算量大、并行度小、速度慢的缺点进行改进,基于二元Euclidean算法提出了改进,设计了相应的乘法器硬件结构,并且分析了其运算效能和资源占用情况。将此求逆计算器的并行改进算法使用Verilog语言编程实现,利用Xilinx ISE 12.4对整个求逆算法综合仿真(行为级),在Xilinx Virtex-5 XC5VFX70T的硬件平台上验证求逆算法的运算效率,结果表明对求逆算法的改进有效地提高了求逆运算的速度。
文摘Aqueous E pH Diagram is an essential tool for analyzing hydrometallurgical and corrosion processes. Due to the requirements for environmental protection and energy saving in recent years, waste water processing and hydrometallurgical process of concentrate have been greatly developed. The construction of E pH diagrams has turned to multi component systems. However, there are some limits in plotting such diagrams. There is only one diagram for one multi component system, which can not reflect the truth of the aqueous reaction. In the paper, a new computation method is proposed to construct E pH diagrams. Component activity term is used to determine the boundary of stable areas. For the multi component systems, different atom ratios of elements have been taken into account. M S H 2O system is chosen to study since it is of importance in metallurgical solution. Compared with conventional methods, the algorithm is simple and conforms to real conditions.