工业生产中的自动化智能化离不开自动目标检测,而高准确性的自动目标检测则依赖于与实际场景相适应的数据集。本文针对工业实际场景,发布了一个密集控制阀零件数据集,命名为PD4CV(Part Detection for Control Valve)2023。该数据集的图...工业生产中的自动化智能化离不开自动目标检测,而高准确性的自动目标检测则依赖于与实际场景相适应的数据集。本文针对工业实际场景,发布了一个密集控制阀零件数据集,命名为PD4CV(Part Detection for Control Valve)2023。该数据集的图像全部来源于控制阀生产车间,图像采集完成后,首先对数据集图片进行预处理操作,接着对数据集图片中的零件目标进行标注,然后再对数据集图片进行训练集、验证集以及测试集的划分。PD4CV2023数据集共涵盖9类零件,包括510张工盘图像和15 015个零件样本,平均每张图像含有约29个零件样本。与现有的目标检测数据集相比,该数据集具有零件摆放密集、遮挡,零件尺寸差异大,部分零件外形相似,零件样本数量不均衡等特点。最后,在不同类型数据集上的预训练对比实验表明,一般场景数据集、特定工业场景数据集只适用于一般和特定任务,而代表实际控制阀生产工况下的PD4CV2023数据集,可用于控制阀零件目标检测,其具有其特殊性和不可替代性;一系列目标检测算法在该数据集上的综合对比则验证了PD4CV2023数据集在一般性目标检测、多尺度目标检测、小规模、不均衡数据下目标检测中的有效性。PD4CV2023数据集可用于面向工业的目标检测的相关研究。展开更多
南京航空航天大学(Nanjing University of Aeronautics and Astronautics,NUAA)雷达探测与成像团队利用自主研发的无人机载微小型合成孔径雷达(Synthetic aperture radar,SAR)系统针对不同型号的坦克、装甲车和战机等十余类典型军事目...南京航空航天大学(Nanjing University of Aeronautics and Astronautics,NUAA)雷达探测与成像团队利用自主研发的无人机载微小型合成孔径雷达(Synthetic aperture radar,SAR)系统针对不同型号的坦克、装甲车和战机等十余类典型军事目标构建了圆周SAR数据集。通过对多次外场试验数据的高精度成像处理,在多俯仰角单基圆周SAR图像数据集的基础上,扩展了不同双基角组合的双基圆周SAR图像数据集。基于该数据集,本文结合团队在SAR图像目标检测和识别方法及应用方面的研究成果,对基于深度学习的SAR目标检测识别技术进行了回顾和综述,对比了不同神经网络模型在南航无人机载圆周SAR数据集上的检测和识别性能。具体地,在目标检测方面,利用SAR图像固有属性获得目标位置信息并结合单阶段轻量级检测算法,提出利用信息分布规律并结合全局注意力机制捕捉小目标位置信息的检测算法,以提高复杂背景下的小目标检测准确率和效率。在目标识别方面,在通过SAR图像先验信息抑制干扰噪声的基础上,提出利用SAR目标多视角信息联合Transformer的目标识别算法,通过设计视角正则化项以约束多视角之间的关联性从而实现不同视角间的特征融合,提高SAR小目标识别的准确率。从无人机载微型SAR系统对地面目标进行实时检测和识别的实际需求出发,本文还探讨了轻量化检测和识别网络在数字信号处理(Digital signal processing,DSP)平台上的部署方案,同时展示了初步试验结果。最后,本文展望了SAR目标智能检测和识别领域面临的挑战和发展趋势。展开更多
由于缺乏大规模的雾天飞机目标遥感数据集,现有的目标检测方法难以在雾天条件下实现高精度的目标识别和定位任务。针对这一问题,提出了一种雾天条件下飞机目标检测方法,该方法结合了暗通道先验算法和Faster R⁃CNN(Faster Regions with C...由于缺乏大规模的雾天飞机目标遥感数据集,现有的目标检测方法难以在雾天条件下实现高精度的目标识别和定位任务。针对这一问题,提出了一种雾天条件下飞机目标检测方法,该方法结合了暗通道先验算法和Faster R⁃CNN(Faster Regions with Convolutional Neural Network Features)模型。首先,随机选取少量飞机目标原始图像,通过图像处理数据增强法扩展原始图像遥感数据集。其次,利用暗通道先验算法计算真实雾气图像的透射率值,并将其移植到原始图像中,生成雾气模拟的遥感数据集。最后,使用创建的数据集训练Faster R⁃CNN网络模型以完成飞机目标的识别和定位任务。实验结果表明,与原始数据集相比,该数据集在轻雾和浓雾状态下的检测性能都有明显提高,证明了所提数据集对于雾天环境下飞机目标检测的有效性和实用性。展开更多
文摘工业生产中的自动化智能化离不开自动目标检测,而高准确性的自动目标检测则依赖于与实际场景相适应的数据集。本文针对工业实际场景,发布了一个密集控制阀零件数据集,命名为PD4CV(Part Detection for Control Valve)2023。该数据集的图像全部来源于控制阀生产车间,图像采集完成后,首先对数据集图片进行预处理操作,接着对数据集图片中的零件目标进行标注,然后再对数据集图片进行训练集、验证集以及测试集的划分。PD4CV2023数据集共涵盖9类零件,包括510张工盘图像和15 015个零件样本,平均每张图像含有约29个零件样本。与现有的目标检测数据集相比,该数据集具有零件摆放密集、遮挡,零件尺寸差异大,部分零件外形相似,零件样本数量不均衡等特点。最后,在不同类型数据集上的预训练对比实验表明,一般场景数据集、特定工业场景数据集只适用于一般和特定任务,而代表实际控制阀生产工况下的PD4CV2023数据集,可用于控制阀零件目标检测,其具有其特殊性和不可替代性;一系列目标检测算法在该数据集上的综合对比则验证了PD4CV2023数据集在一般性目标检测、多尺度目标检测、小规模、不均衡数据下目标检测中的有效性。PD4CV2023数据集可用于面向工业的目标检测的相关研究。
文摘南京航空航天大学(Nanjing University of Aeronautics and Astronautics,NUAA)雷达探测与成像团队利用自主研发的无人机载微小型合成孔径雷达(Synthetic aperture radar,SAR)系统针对不同型号的坦克、装甲车和战机等十余类典型军事目标构建了圆周SAR数据集。通过对多次外场试验数据的高精度成像处理,在多俯仰角单基圆周SAR图像数据集的基础上,扩展了不同双基角组合的双基圆周SAR图像数据集。基于该数据集,本文结合团队在SAR图像目标检测和识别方法及应用方面的研究成果,对基于深度学习的SAR目标检测识别技术进行了回顾和综述,对比了不同神经网络模型在南航无人机载圆周SAR数据集上的检测和识别性能。具体地,在目标检测方面,利用SAR图像固有属性获得目标位置信息并结合单阶段轻量级检测算法,提出利用信息分布规律并结合全局注意力机制捕捉小目标位置信息的检测算法,以提高复杂背景下的小目标检测准确率和效率。在目标识别方面,在通过SAR图像先验信息抑制干扰噪声的基础上,提出利用SAR目标多视角信息联合Transformer的目标识别算法,通过设计视角正则化项以约束多视角之间的关联性从而实现不同视角间的特征融合,提高SAR小目标识别的准确率。从无人机载微型SAR系统对地面目标进行实时检测和识别的实际需求出发,本文还探讨了轻量化检测和识别网络在数字信号处理(Digital signal processing,DSP)平台上的部署方案,同时展示了初步试验结果。最后,本文展望了SAR目标智能检测和识别领域面临的挑战和发展趋势。
文摘由于缺乏大规模的雾天飞机目标遥感数据集,现有的目标检测方法难以在雾天条件下实现高精度的目标识别和定位任务。针对这一问题,提出了一种雾天条件下飞机目标检测方法,该方法结合了暗通道先验算法和Faster R⁃CNN(Faster Regions with Convolutional Neural Network Features)模型。首先,随机选取少量飞机目标原始图像,通过图像处理数据增强法扩展原始图像遥感数据集。其次,利用暗通道先验算法计算真实雾气图像的透射率值,并将其移植到原始图像中,生成雾气模拟的遥感数据集。最后,使用创建的数据集训练Faster R⁃CNN网络模型以完成飞机目标的识别和定位任务。实验结果表明,与原始数据集相比,该数据集在轻雾和浓雾状态下的检测性能都有明显提高,证明了所提数据集对于雾天环境下飞机目标检测的有效性和实用性。